Skip to main content
Log in

Conditionally Statistical Description of Turbulent Scalar Mixing at Subgrid-Scales

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Conditionally filtered passive scalar density function (FDF), dissipation (CFD), diffusion (CFDIF) and conditionally filtered velocity (CFV) are studied by using direct numerical simulation (DNS) data of homogeneous isotropic turbulent mixing with an imposed mean scalar gradient. The velocity and scalar fields are statistically stationary and have a Taylor micro-scale Reynolds number of 209. A three-dimensional box filter with a filter width of 21 scalar dissipation scales is employed to obtain filtered variables. The PDFs of conditioning variables, filtered scalar (\(\left \langle \phi \right \rangle _L \)), and subgrid-scale (SGS) scalar variance (\(\left \langle \phi ^{\prime \prime 2} \right \rangle _L\)), are shown and are in reasonably good agreement with the experimental results of a one-dimensional filter. Since the three-dimensional filter has been used, the PDF of the filtered scalar exhibits perfect symmetry, and this significantly affects the symmetry of succeeding conditionally filtered statistics on \(\left \langle \phi \right \rangle _L\) such as FDF, CFD, and CFDIF. The FDF, CFD, and CFDIF also show visible dependence on \(\left \langle \phi ^{\prime \prime 2} \right \rangle _L\). When \(\left \langle \phi ^{\prime \prime 2} \right \rangle _L\) varies from large to small, CFD varies from bell-shaped to U-shaped curves, and CFDIF varies from an inverse-S curve to a linear line; these are in accordance with the evolution of the FDF varying from bimodal to Gaussian. It suggests that the SGS mixing could be compared with global binary mixing in the view of the conditional description and this also suggests that it would reveal the non-equilibrium characteristics of the SGS scalar mixing; this SGS scalar mixing is supposed to be caused by diffusion-layer-like structures. In addition, the CFV remains linear regardless of the value of \(\left \langle \phi ^{\prime \prime 2} \right \rangle _L\). These results numerically confirm two distinct regimes of SGS mixing observed in previous experimental studies and extend the experimental results into isotropic turbulence, which suggests that the characteristics of the SGS scalar are intrinsic behavior of SGS mixing, independent of flow types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cai, J., Barlow, R. S., Karpetis, A. N., Tong, C.: Conditionally filtered diffusion of mixture fraction and temperature in turbulent partially premixed flames. Proc. Combust. Inst. 33, 1505–1513 (2011)

    Article  Google Scholar 

  2. Cai, J., Wang, D., Tong, C., Barlow, R. S., Karpetis, A. N.: Investigation of subgrid-scale mixing of mixture fraction and temperature in turbulent partially premixed flames. Proc. Combust. Inst. 32, 1517–1525 (2009)

    Article  Google Scholar 

  3. Colucci, P. J., Jaberi, F. A., Givi, P., Pope, S. B.: Filtered density function for large eddy simulation of turbulent reacting flows. Phys. Fluids 10(2), 381–396 (1998)

    Article  MathSciNet  Google Scholar 

  4. Cook, A. W., Riley, J. J.: A subgrid model for equilibrium chemistry in turbulent flows. Phys. Fluids 6(8), 2868–2870 (1994)

    Article  Google Scholar 

  5. Drozda, T. G., Wang, G., Sankaran, V., Mayo, J. R., Oefelein, J. C., Barlow, R. S.: Scalar filtered mass density functions in nonpremixed turbulent flames. Combustion and Flame 155, 54–69 (2008)

    Article  Google Scholar 

  6. Eswaran, V., Pope, S. B.: Direct numerical simulations of the turbulent mixing of a passive scalar. Phys. Fluids 31(3), 506–520 (1988)

    Article  Google Scholar 

  7. Ferchichi, M., Tavoularis, S.: Scalar probability density function and fine structure in uniformly sheared turbulence. J. Fluid Mech 461, 155–182 (2002)

    Article  MATH  Google Scholar 

  8. Fureby, C.: Towards the use of large eddy simulation in engineering. Prog. Aeronaut. Sci. 44, 499–515 (2008)

    Article  Google Scholar 

  9. Gylfason, A., Warhaft, Z.: On higher order passive scalar structure functions in grid turbulence. Phys. Fluids 16(11), 4012–4019 (2004)

    Article  Google Scholar 

  10. Hasse, C., Peters, N.: A two mixture fraction flamelet model applied to split injections in a di diesel engine. Proc. Combust. Inst. 30, 2755–2762 (2005)

    Article  Google Scholar 

  11. Ihme, M., See, Y.C.: Prediction of autoignition in a lifted methane/air flame using an usteady flamelet/progress variable model. Combust. Flame 157, 1850–1862 (2010)

    Article  Google Scholar 

  12. Ihme, M., Zhang, J., He, G., Dally, B.: Large-eddy-simulation of a jet-in-hot-coflow burner operating in the oxygen-diluted combustion regime. Flow, Turbul. Combust 89, 449–464 (2012)

    Article  Google Scholar 

  13. Jaberi, F. A., Miller, R. S., Madnia, C. K., Givi, P.: Non-guassian scalar statistics in homogeneous turbulence. J Fluid Mech 313, 241–282 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kronenburg, A.: Double conditioning of reactive scalar transport equations in turbulent nonpremixed flames. Physics of Fluids 16(7), 2640–2648 (2004)

    Article  Google Scholar 

  15. Liu, S., Tong, C.: Subgrid-scale mixing of mixture fraction, temperature, and species mass fractions in turbulent partially premixed flames. Proc. Combust. Inst. 34, 1231–1239 (2013)

    Article  Google Scholar 

  16. Overholt, M. R., Pope, S. B.: Direct numerical simulation of a passive scalar with imposed mean gradient in isotropic turbulence. Physics of Fluids 8(11), 3128–3148 (1996)

    Article  MATH  Google Scholar 

  17. Pierce, C. D., Moin, P.: Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J Fluid Mech 504, 73–97 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pitsch, H.: Large-eddy simulation of turbulent combustion. Annu Rev. Fluid Mech 38, 453–482 (2006)

    Article  MathSciNet  Google Scholar 

  19. Pitsch, H., Steiner, H.: Large-eddy-simulation of a turbulent pilotecd methane/air diffusion flame (sandia flame d). Phys. Fluids 12(10), 2541–2554 (2000)

    Article  Google Scholar 

  20. Pope, S. B., Ching, E. S. C.: Stationary probability density function: An exact result. Phys. Fluids, A 5(7), 1529–1531 (1993)

    Article  MATH  Google Scholar 

  21. Pumir, A.: A numerical study of the mixing of a passive scalar in three dimensions in the presence of a mean gradient. Phys. Fluids 6(6), 2118–2132 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. Samtaney, R., Pullin, D. I., Kosović, B.: Direct numerical simulation of decaying compressible turbulence and shocklet statistics. Phys. Fluids 13(5), 1415–1430 (2001)

    Article  Google Scholar 

  23. Tong, C.: Measurements of conserved scalar filtered density function in a turbulent jet. Phys. Fluids 13(10), 2923–2937 (2001)

    Article  Google Scholar 

  24. Ukai, S., Kronenburg, A., Stein, O.: Les-cmc of a dilute acetone spray flame. Proc. Combust. Inst. 34, 1643–1650 (2013)

    Article  Google Scholar 

  25. Wall, C., Boersma, B. J., Moin, P.: An evaluation of the assumed beta probability density function subgridscale model for large eddy simulation of nonpremixed, turbulent combustion with heat release. Phys. Fluids 12(10), 2522–2529 (2000)

    Article  Google Scholar 

  26. Wang, D., Tong, C.: Conditionally filtered scalar dissipation, scalar diffusion, and velocity in a turbulent jet. Phys. Fluids 14(7), 2170–2185 (2002)

    Article  Google Scholar 

  27. Wang, D., Tong, C.: Experimental study of velocity filtered joint density function for large eddy simulation. Phys. Fluids 16(10), 3599–3613 (2004)

    Article  Google Scholar 

  28. Wang, D., Tong, C.: Experimental study of velocity-scalar filtered joint density function for les of turbulent combustion. Proc. Combust. Inst. 30, 567–574 (2005)

    Article  Google Scholar 

  29. Wang, D., Tong, C., Barlow, R. S., Karpetis, A. N.: Experimental study of scalar filtered mass density function in turbulent partially premixed flames. Proc. Combust. Inst. 31, 1533–1541 (2007)

    Article  Google Scholar 

  30. Wang, L. P., Chen, S., Brasseur, J. G.: Examination of hypotheses in the kolmogorov refined turbulence theory through high-resolution simulations. part 2. passive scalar field. J. Fluid Mech 400, 163–197 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Gao, F., Jin, G. et al. Conditionally Statistical Description of Turbulent Scalar Mixing at Subgrid-Scales. Flow Turbulence Combust 93, 125–140 (2014). https://doi.org/10.1007/s10494-014-9540-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-014-9540-x

Keywords

Navigation