Skip to main content
Log in

Liftoff of a Co-Flowing Non-Premixed Turbulent Methane Flame: Effect of the Fuel Nozzle Orifice Geometry

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

This paper reports an experimental study on the effect of the fuel nozzle orifice geometry on the stability of turbulent non-premixed methane flame. Different internal geometries (orifice equivalent diameter, length to diameter ratio and contraction angle) of a circular and a rectangular nozzle with an aspect ratio of 2 were examined. The strength of the co-airflow was also varied to assess its impact on the jet flame stability. The experimental data revealed that the level of turbulence in the jet near-field is, in general, higher for the rectangular nozzle in comparison with the circular nozzle. This high level of turbulence was found to accelerate the liftoff transition of the attached flame. The results revealed also that there is a clear interplay between the flame liftoff height and the jet flow characteristics. That is, a rectangular jet, which spreads faster along the minor axis and generates higher near-field turbulence, results in a flame base sitting closer to the nozzle exit in comparison with that of its circular nozzle counterpart. Finally, the presence of a moderate co-airflow resulted in a higher flame liftoff velocity and height. It also led to the appearance of a hysteresis phenomenon in the low jet velocity range regardless of the exit orifice shape of the fuel nozzle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vanquickenborne, L., Van Tiggelen, A.: The stabilization mechanism of lifted diffusion flames. Combust. Flame 10, 59–69 (1966)

    Article  Google Scholar 

  2. Kalghatgi, G.T.: Blow-out stability of gaseous jet diffusion flames. Part I: in still air. Combust. Sci. Technol. 26, 233–239 (1981)

    Article  Google Scholar 

  3. Kalghatgi, G.T.: Lift-off heights and visible lengths of vertical turbulent jet diffusion flames in still sir. Combust. Sci. Technol. 41, 17–29 (1984)

    Article  Google Scholar 

  4. Peters, N., Williams, F.A.: Liftoff characteristics of turbulent jet diffusion flames. AIAA J. 21, 423–429 (1983)

    Article  MATH  Google Scholar 

  5. Broadwell, J.J.E., Dahm, W.W.J.A., Mungal, M.G.: Blowout of turbulent diffusion flames. Symp. (International) Combust. 20, 303–310 (1985)

    Article  Google Scholar 

  6. Dahm, W.J.A., Dibble, R.W.: Coflowing turbulent jet diffusion flame blowout. Symp. (International) Combust. 22, 801–808 (1989)

    Article  Google Scholar 

  7. Muñiz, L., Mungal, M.G., Muniz, L.: Instantaneous flame-stabilization velocities in lifted-jet diffusion flames. Combust. Flame 111, 16–31 (1997)

    Article  Google Scholar 

  8. Cha, M.S.S., Chung, S.H.H.: Characteristics of lifted flames in nonpremixed turbulent confined jets. Symp. (International) Combust. 26, 121–128 (1996)

    Article  Google Scholar 

  9. Chen, Y., Chang, C., Pan, K.-L., Yang, J.-T.: Flame lift-off and stabilization mechanisms of nonpremixed jet flames on a bluff-body burner. Combust. Flame 115, 51–65 (1998)

    Article  Google Scholar 

  10. Montgomery, C.J., Kaplan, C.R., Oran, E.S.: The effect of coflow velocity on a lifted methane-air jet diffusion flame. Symp. (International) Combust. 27, 1175–1182 (1998)

    Article  Google Scholar 

  11. Moore, N.J., Terry, S.D., Lyons, K.M.: Flame hysteresis effects in methane jet flames in air-coflow. J. Energy Resour. Technol. 133, 022202 (2011)

    Article  Google Scholar 

  12. Moore, N.J., Lyons, K.M.: Leading-edge flame fluctuations in lifted turbulent flames. Combust. Sci. Technol. 182, 777–793 (2010)

    Article  Google Scholar 

  13. Wu, Y., Lu, Y., Al-Rahbi, I.S., Kalghatgi, G.T.: Prediction of the liftoff, blowout and blowoff stability limits of pure hydrogen and hydrogen/hydrocarbon mixture jet flames. Int. J. Hydrog. Energy 34, 5940–5945 (2009)

    Article  Google Scholar 

  14. Akbarzadeh, M., Birouk, M.: Liftoff of a co-flowing non-premixed turbulent methane flame: effect of the internal geometrical parameters of a circular fuel nozzle. Combust. Sci. Technol. 185, 1441–1463 (2013)

    Article  Google Scholar 

  15. Akbarzadeh, M.: A study of turbulent diffusion methane flame: effect of fuel nozzle geometry. PhD thesis, University of Manitoba (2014)

  16. Kalghatgi, G.T.: The visible shape and size of a turbulent hydrocarbon jet diffusion flame in a cross-wind. Combust. Flame 52, 91–106 (1983)

    Article  Google Scholar 

  17. Kalghatgi, G.T.: Blow-out stability of gaseous jet diffusion flames - 2. effect of cross wind. Combust. Sci. Technol. 26, 241–244 (1981)

    Article  Google Scholar 

  18. Brown, C.C.D., Watson, K.A.K., Lyons, K.M.K.: Studies on lifted jet flames in coflow: the stabilization mechanism in the near- and far-fields. Flow Turbul. Combust 62, 249–273 (1999)

    Article  MATH  Google Scholar 

  19. Chen, M., Herrmann, M., Peters, N.: Flamelet modeling of lifted turbulent methane/air and propane/air jet diffusion flames. Proc. Combust. Inst. 28, 167–174 (2000)

    Article  Google Scholar 

  20. Terry, S.D., Lyons, K.M.: Turbulent lifted flames in the hysteresis regime and the effects of coflow. J. Energy Resour. Technol. 128, 319 (2006)

    Article  Google Scholar 

  21. Kim, K.N.N., Won, S.H.H., Chung, S.H.H., Kim, M.K.: Characteristics of turbulent lifted flames in coflow jets with initial temperature variation. Proc. Combust. Inst. 31, 1591–1598 (2007)

    Article  Google Scholar 

  22. Lawn, C.J.J.: Lifted flames on fuel jets in co-flowing air. Prog. Energy Combust. Sci. 35, 1–30 (2009)

    Article  Google Scholar 

  23. Gollahalli, S.R., Savaş, Ö., Huang, R.F., Rodriquez Azara, J.L.: Structure of attached and lifted gas jet flames in hysteresis region. Symp. (International) Combust. 21, 1463–1471 (1988)

    Article  Google Scholar 

  24. Iyogun, C.O., Birouk, M.: Stability of a turbulent jet methane flame issuing from an asymmetrical nozzles with sudden expansion. Combust. Sci. Technol. 181, 1–17 (2008)

    Article  Google Scholar 

  25. Coats, C.M., Zhao, H.: Transition and stability of turbulent jet diffusion flames. Symp. (International) Combust. 22, 685–692 (1989)

    Article  Google Scholar 

  26. Scholefield, D.A., Garside, J.E.: The structure and stability of diffusion flames. 3rd Symposium on Combustion and Flame and Explosion Phenomena, September 7, 1948-September 11, 1948. pp. 102–110. Combustion Institute, Madison (1949)

  27. Terry, S.D., Lyons, K.M.: Low Reynolds number turbulent lifted flames in high co-flow. Combust. Sci. Technol. 177, 2091–2112 (2005)

    Article  Google Scholar 

  28. Chung, S.H., Lee, B.J.: On the characteristics of laminar lifted flames in a nonpremixed jet. Combust. Flame 86, 62–72 (1991)

    Article  Google Scholar 

  29. Eickhoff, H., Lenze, B., Leuckel, W.: Experimental investigation on the stabilization mechanism of jet diffusion flames. Symp. (International) Combust. 20, 311–318 (1985)

    Article  Google Scholar 

  30. Langman, a.S.S., Nathan, G.J.J., Mi, J., Ashman, P.J.J.: The influence of geometric nozzle profile on the global properties of a turbulent diffusion flame. Proc. Combust. Inst. 31, 1599–1607 (2007)

    Article  Google Scholar 

  31. Iyogun, C.O., Birouk, M.: Effect of fuel nozzle geometry on the stability of a turbulent jet methane flame. Combust. Sci. Technol. 180, 2186–2209 (2008)

    Article  Google Scholar 

  32. Leung, T., Wierzba, I.: The effect of co-flow stream velocity on turbulent non-premixed jet flame stability. Proc. Combust. Inst. 32, 1671–1678 (2009)

    Article  Google Scholar 

  33. Iyogun, C.O., Birouk, M., Kozinski, J.a.: Experimental investigation of the effect of fuel nozzle geometry on the stability of a swirling non-premixed methane flame. Fuel 90, 1416–1423 (2011)

    Article  Google Scholar 

  34. Gutmark, E., Schadow, K.C., Parr, T.P., Hanson-Parr, D.M., Wilson, K.J.: Noncircular jets in combustion systems. Exp. Fluids 7, 248–258 (1989)

    Article  Google Scholar 

  35. Schadow, K.C., Gutmark, E., Parr, D.M., Wilson, K.J.: Selective control of flow coherence in triangular jets. Exp. Fluids 6, 129–135 (1988)

    Google Scholar 

  36. Pollard, A., Marsters, G.F., Quinn, W.R.: Measurements in a turbulent rectangular free jet. Symposium on Turbulent Shear Flows, 4th edn. Karlsruhe (1984)

  37. Quinn, W.R.: Turbulent free jet flows issuing from sharp-edged rectangular slots: the influence of slot aspect ratio. Exp. Thermal Fluid Sci. 5, 203–215 (1992)

    Article  Google Scholar 

  38. Quinn, W.R.: Measurements in the near flow field of an isosceles triangular turbulent free jet. Exp. Fluids 39, 111–126 (2005)

    Article  Google Scholar 

  39. Iyogun, C.O., Birouk, M.: Effect of sudden expansion on entrainment and spreading rates of a jet issuing from asymmetric nozzles. Flow Turbul. Combust. 82, 287–315 (2008)

    Article  Google Scholar 

  40. Gutmark, E., Grinstein, F.: Flow control with noncircular jets 1. Ann. Rev. Fluid Mech. (1999)

  41. Gutmark, E., Schadow, K.C., Wilson, K.J.: Subsonic and supersonic combustion using noncircular injectors. J. Propuls. Power 7, 240–249 (1991)

    Article  Google Scholar 

  42. Gollahalli, S.R., Khanna, T., Prabhu, N.: Diffusion flames of gas jets issued from circular and elliptic nozzles. Combust. Sci. Technol. 86, 267–288 (1992)

    Article  Google Scholar 

  43. Luo, K.H.: Axis switching in turbulent buoyant diffusion flames. Proc. Combust. Inst. 30, 603–610 (2005)

    Article  Google Scholar 

  44. Kays, W., Crawford, M., Weigand, B.: Convective heat and mass transfer (2005)

  45. Coleman, H., Steele, W.: Engineering application of experimental uncertainty analysis. AIAA J. (2012)

  46. Forliti, D.J., Strykowski, P.J., Debatin, K.: Bias and precision errors of digital particle image velocimetry. Exp. Fluids 28, 436–447 (2000)

    Article  Google Scholar 

  47. Leung, T., Wierzba, I.: The effect of hydrogen addition on biogas non-premixed jet flame stability in a co-flowing air stream. Int. J. Hydrog. Energy 33, 3856–3862 (2008)

    Article  Google Scholar 

  48. Quinn, W.R.: Experimental study of the near field and transition region of a free jet issuing from a sharp-edged elliptic orifice plate. Eur. J. Mech. B/Fluids 26, 583–614 (2007)

    Article  MATH  Google Scholar 

  49. McCraw, J.L., Moore, N.J., Lyons, K.M.: Observations on upstream flame propagation in the ignition of hydrocarbon jets. Flow Turbul. Combust. 79, 83–97 (2007)

    Article  Google Scholar 

  50. Terry, S.: On flame stability in the hysteresis regime in co-flow. PhD thesis, North Carolina State University (2005)

  51. Nathan, G.J., Mi, J., Alwahabi, Z.T., Newbold, G.J.R., Nobes, D.S.: Impacts of a jet’s exit flow pattern on mixing and combustion performance. Prog. Energy Combust. Sci. 32, 496–538 (2006)

    Article  Google Scholar 

  52. Akbarzadeh, M., Birouk, M., Sarh, B.: Numerical simulation of a turbulent free jet issuing from a rectangular nozzle. Comput. Thermal Sci. 4, 1–22 (2012)

    Article  Google Scholar 

  53. Upatnieks, A., Driscoll, J.F., Rasmussen, C.C., Ceccio, S.L.: Liftoff of turbulent jet flames—assessment of edge flame and other concepts using cinema-PIV. Combust. Flame 138, 259–272 (2004)

    Article  Google Scholar 

  54. Iyogun, C.O., Birouk, M.: On the stability of a turbulent non-premixed methane flame. Combust. Sci. Technol. 181, 1443–1463 (2008)

    Article  Google Scholar 

  55. Agrawal, A., Prasad, A.K.: Organizational modes of large-scale vortices in an axisymmetric turbulent jet. Flow Turbul. Combust. 68, 359–377 (2002)

    Article  MATH  Google Scholar 

  56. Mi, J., Kalt, P., Nathan, G.J., Wong, C.Y.: PIV measurements of a turbulent jet issuing from round sharp-edged plate. Exp. Fluids 42, 625–637 (2007)

    Article  Google Scholar 

  57. Dahm, W.J.A., Maymant, A.G. Blowout limits of turbulent jet diffusion flames for arbitrary source conditions. 28, 1157–1162 (1990)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madjid Birouk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbarzadeh, M., Birouk, M. Liftoff of a Co-Flowing Non-Premixed Turbulent Methane Flame: Effect of the Fuel Nozzle Orifice Geometry. Flow Turbulence Combust 92, 903–929 (2014). https://doi.org/10.1007/s10494-014-9537-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-014-9537-5

Keywords

Navigation