Skip to main content
Log in

A Methodology for Soot Prediction Including Thermal Radiation in Complex Industrial Burners

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

This paper proposes a method for modeling soot when performing Large Eddy Simulation of complex geometries. To obtain a good trade-off between CPU cost and accuracy, soot chemistry is included via a tabulated flamelet approach, combined to a turbulent combustion model for Large Eddy Simulation based on a simplified description of chemistry. A semi-empirical soot model is chosen and validated on laminar premixed and counterflow diffusion flames. A proposed procedure enables to calculate radiation with a Discrete Ordinates Method approach and optimized spectral models. The developed soot model is applied to a real configuration, being the combustion chamber of a helicopter engine. To evaluate the importance of radiative heat losses, two cases are studied, using either adiabatic conditions or accounting for radiative heat gains/loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jung, H., Guo, B., Anastasio, C., Kennedy, I.M.: Quantitative measurements of the generation of hydroxyl radicals by soot particles in a surrogate lung fluid. Atmos. Environ. 40(6), 1043–1052 (2006)

    Article  Google Scholar 

  2. Kärcher, B., Möhler, O., DeMott, P.J., Pechtl, S., Yu, F.: Insights into the role of soot aerosols in cirrus clouds formation. Atmos. Chem. Phys. 7, 4203–4227 (2007)

    Article  Google Scholar 

  3. Viskanta, R., Mengük, M.P.: Radiation heat transfer in combustion systems. Progr. Energ. Combust. Sci. 13, 97–160 (1987)

    Article  Google Scholar 

  4. Markatou, P., Wang, H., Frenklach, M.: A computational study of sooting limits in laminar premixed flames of ethane, ethylene, and acetylene. Combust. Flame 93, 467–482 (1993)

    Article  Google Scholar 

  5. Bönig, M., Feldermann, Chr., Jander, H., Lüers, B., Rudolph, G., Wagner, Gg.: Soot formation in premixed C2H4 flat flames at elevated pressure. Proc. Combust. Inst. 23, 1581–1587 (1990)

    Article  Google Scholar 

  6. Bisetti, F., Blanquart, G., Mueller, M.E., Pitsch, H.: On the formation and early evolution of soot in turbulent nonpremixed flames. Combust. Flame 159, 317–335 (2012)

    Article  Google Scholar 

  7. Franzelli, B., Riber, E., Sanjosé, M., Poinsot, T.: A two-step chemical scheme for Large-Eddy Simulation of kerosene-air flames. Combust. Flame 157(7), 1364–1373 (2010)

    Article  Google Scholar 

  8. Pels Leusden, C., Peters, N.: Experimental and numerical analysis of the influence of oxygen on soot formation in laminar couterflow flames of acetylene. Proc. Combust. Inst. 28, 2619–2625 (2000)

    Article  Google Scholar 

  9. Guo, H., Liu, F., Smallwood, G.J.: Soot and NO formation in counterflow ethylene/oxygen/nitrogen diffusion flames. Combust. Theor. Model. 8(3), 475–489 (2004)

    Article  Google Scholar 

  10. Wang, H., Du, D.X., Sung, C.J., Law, C.K.: Experiments and numerical simulation on soot formation in opposed-jet ethylene diffusion flames. Combust. Flame 26(2), 2359–2368 (2006)

    Google Scholar 

  11. Mehta, R.S., Haworth, D.C., Modest, M.F.: An assessment of gas-phase reaction mechanisms and soot models for laminar atmospheric-pressure ethylene-air flames. Proc. Combust. Inst. 32, 1327–1334 (2009)

    Article  Google Scholar 

  12. Liu, F., Guo, H., Smallwood, G.J., Gülder, O.L.: Effects of gas and soot radiation on soot formation in a coflow laminar ethylene diffusion flame. J. Quant. Spectrosc. Radiat. Transf. 73, 409–421 (2002)

    Article  Google Scholar 

  13. El-Asrag, H., Menon, S.: Large eddy simulation of soot formation in a turbulent non-premixed jet flame. Combust. Flame 156(2), 385–395 (2009)

    Article  Google Scholar 

  14. Mueller, M.E., Pitsch, H.: LES model for sooting turbulent nonpremixed flames. Combust. Flame 159(6), 2166–2180 (2012)

    Article  Google Scholar 

  15. Mueller, M.E., Pitsch, H.: Large eddy simulation of soot evolution in an aircraft combustor. Phys. Fluids 25, 110812 (2013)

    Article  Google Scholar 

  16. Amaya, J., Collado, E., Cuenot, B., Poinsot, T.: Coupling LES, radiation and structure in gas turbine simulations. In CTR (ed.) Proceedings of the Summer Program, vol. 2010, pp. 239–249 (2010)

  17. Staffelbach, G., Gicquel, L.Y.M., Boudier, G., Poinsot, T.: Large eddy simulation of self-excited azimuthal modes in annular combustors. Proc. Combust. Inst. 32, 2909–2916 (2009)

    Article  Google Scholar 

  18. Lecocq, G., Richard, S., Michel, J.-B., Vervisch, L.: A new LES model coupling flame surface density and tabulated kinetics approaches to investigate knock and pre-ignition in piston engines. Proc. Combust. Inst. 33, 3105–3114 (2011)

    Article  Google Scholar 

  19. Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12(7), 1843–1863 (2000)

    Article  Google Scholar 

  20. Leung, K.M., Lindstedt, R.P.: A simplified reaction mechanism for soot formation in nonpremixed flames. Combust. Flame 87, 289–305 (1991)

    Article  Google Scholar 

  21. Bradley, D., Kwa, L.K., Lau, A.K.C., Missaghi, M.: Laminar flamelet modeling of recirculating premixed methane and propane-air combustion. Combust. Flame 71(2), 109–122 (1988)

    Article  Google Scholar 

  22. van Oijen, J.A., Lammers, F.A., de Goey, L.P.H.: Modeling of premixed laminar flames using flamelet generated manifolds. Combust. Sci. Tech. 127, 2124–2134 (2001)

    Google Scholar 

  23. Gicquel, O., Darabiha, N., Thévenin, D.: Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proc. Combust. Inst. 28, 1901–1908 (2000)

    Article  Google Scholar 

  24. Pope, S.B: Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust. Theor. Model. 1, 41–63 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Fiorina, B., Gicquel, O., Vervisch, L., Carpentier, S., Darabiha, N.: Premixed turbulent combustion modeling using a tabulated detailed chemistry and PDF. Proc. Combust. Inst. 30(1), 867–874 (2005)

    Article  Google Scholar 

  26. Galpin, J., Naudin, A., Vervisch, L., Angelberger, C., Colin, O., Domingo, P.: Large-eddy simulation of a fuel-lean premixed turbulent swirl-burner. Combust. Flame 155(1-2), 247–266 (2008)

    Article  Google Scholar 

  27. Fiorina, B., Baron, R., Gicquel, O., Thevenin, D., Carpentier, S., Darabiha, N.: Modelling non-adiabatic partially premixed flames using flame-prolongation of ILDM. Combust. Theor. Model. 7(3), 449–470 (2003)

    Article  Google Scholar 

  28. Galpin, J., Angelberger, C., Naudin, A., Vervisch, L.: Large-eddy simulation of H2-air auto-ignition using tabulated detailed chemistry. J. Turb 9(13) (2008)

  29. Moss, J.B., Stewart, C.D., Syed, K.J.: Flowfield modelling of soot formation at elevated pressure. Proc. Combust. Inst. 22, 413 (1988)

    Article  Google Scholar 

  30. Di Domenico, M., Gerlinger, P., Aigner, M.: Development and validation of a new soot formation model for gas turbine combustor simulations. Combust. Flame 157, 246–258 (2010)

    Article  Google Scholar 

  31. Moss, J.B., Stewart, C.D., Young, K.J.: Modeling soot formation and burnout in a high temperature laminar diffusion flame burning under oxygen-enriched conditions. Combust. Flame 101, 491–500 (1995)

    Article  Google Scholar 

  32. Netzell, K., Lehtiniemi, H., Mauss, F.: Calculating the soot particle size distribution function in turbulent diffusion flames using a sectional method. Proc. Combust. Inst. 31(1), 667–674 (2007)

    Article  Google Scholar 

  33. Bhaltasar, M., Kraft, M.: A stochastic approach to calculate the particle size distribution function of soot particles in laminar premixed flames. Combust. Flame 133(289–298) (2003)

  34. Frenklach, M.: Method of moments with interpolative closure. Chem. Eng. Sci. 57(12), 2229–2239 (2002)

    Article  Google Scholar 

  35. Coelho, P.J.: Numerical simulation of the interaction between turbulence and radiation in reactive flows. Progr. Energ. Combust. Sci. 33(4), 311–383 (2007)

    Article  Google Scholar 

  36. Amaya, J., Cabrit, O., Poitou, D., Cuenot, B., El Hafi, M.: Unsteady coupling of Navier-Stokes and radiative heat transfer solvers applied to an anisothermal multicomponent turbulent channel flow. J. Quant. Spectrosc. Radiat. Transf. 111(2), 295–301 (2010)

    Article  Google Scholar 

  37. Poitou, D., El Hafi, M., Cuenot, B.: Analysis of radiation modeling for turbulent combustion: development of a methodology to couple turbulent combustion and radiative heat transfer in LES. J. Heat Trans. 133(6), 062701–10 (2010)

    Article  Google Scholar 

  38. Poitou, D., Amaya, J., El Hafi, M., Cuénot, B.: Analysis of the interaction between turbulent combustion and thermal radiation using unsteady coupled LES/DOM simulations. Combust. Flame 159, 1605–1618 (2011)

    Article  Google Scholar 

  39. André, F., Vaillon, R.: A nonuniform narrow band correlated-k approximation using the k-moment method. J. Quant. Spectrosc. Radiat. Transf. 111(12–13), 1900–1911 (2010)

    Article  Google Scholar 

  40. Goutière, V., Liu, F., Charette, A.: An assessment of real-gas modelling in 2D enclosures. J. Quant. Spectrosc. Radiat. Transf. 64, 299–326 (2000)

    Article  Google Scholar 

  41. Goutière, V., Charette, A., Kiss, L.: Comparative performance of non-gray gas modeling techniques. Numer. Heat. Tran. Part B 41, 361–381 (2002)

    Article  Google Scholar 

  42. Soufiani, A., Djavdan, E.: A comparison between weighted sum of gray gases and statistical narrow-band radiation models for combustion applications. Combust. Flame 97(2), 240–250 (1994)

    Article  Google Scholar 

  43. Poitou, D., Amaya, J., Bushan Singh, C., Joseph, D., El Hafi, M., Cuenot, B.: Validity limits for the global model FS-SNBcK for combustion applications. In: Proceedings of Eurotherm83 – Computational Thermal Radiation in Participating Media III (2009)

  44. Liu, F., Yang, M., Smallwood, G.J., Zhang, H: Evaluation of the SNB based full-spectrum CK method for thermal radiation calculations in C O 2H 2 O mixtures. In: Proceedings of ICHMT, RAD04. Istanbul (2004)

  45. Liu, F., Guo, H., Smallwood, G.J., El Hafi, M.: Effects of gas and soot radiation on soot formation in counterflow ethylene diffusion flames. J. Quant. Spectrosc. Radiat. Transf. 84(4), 501–511 (2004)

    Article  Google Scholar 

  46. Poinsot, T., Veynante, D.: Theorical and Numerical Combustion. Edwards (2001)

  47. Smagorinsky, J.: General circulation experiments with the primitive equations: 1. the basic experiment. Mon. Weather Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  48. Boileau, M., Staffelbach, G., Cuenot, B., Poinsot, T., Bérat, C.: LES of an ignition sequence in a gas turbine engine. Combust. Flame 154(1–2), 2–22 (2008)

    Article  Google Scholar 

  49. Boudier, G., Gicquel, L.Y.M., Poinsot, T.: Effects of mesh resolution on large eddy simulation of reacting flows in complex geometry combustors. Combust. Flame 155, 196–214 (2008)

    Article  Google Scholar 

  50. Roux, A., Gicquel, L.Y.M., Sommerer, Y., Poinsot, T.: Large eddy simulation of mean and oscillating flow in side-dump ramjet combustor. Combust. Flame 152(1-2), 154–176 (2008)

    Article  Google Scholar 

  51. Poitou, D., El Hafi, M., Cuenot, B.: Diagnosis of Turbulence Radiation Interaction in turbulent flames and implications for modeling in Large Eddy Simulation. Turk. J. Eng. Environ. Sci. 31, 371–381 (2007)

    Google Scholar 

  52. Roger, Maxime, Pedro, J., Coelho, da Silva, C.B.: The influence of the non-resolved scales of thermal radiation in Large Eddy Simulation of turbulent flows: a fundamental study. Int. J. Heat Mass Tran. 53(13-14), 2897–2907 (2010)

  53. Attili, A., Bisetti, F., Mueller, M. E.: DNS of soot formation and growth in turbulent non-premixed flames: Damkohler number effects and Lagrangian statistics of soot transport. In: Proc. of the Summer Program , pp. 409–418. Center for Turbulence Research, Proceedings of the Summer Program (2012)

  54. Boileau, M., Staffelbach, G., Cuenot, B., Poinsot, T., Bérat, C.: LES of an ignition sequence in a gas turbine engine. Combust. Flame 154(1–2), 2–22 (2008)

    Article  Google Scholar 

  55. Colin, O., Rudgyard, M.: Development of high-order Taylor-Galerkin schemes for LES. J. Comput. Phys. 162(2), 338–371 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  56. Poinsot, T., Lele, S.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101(1), 104–129 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  57. Joseph, D., El Hafi, M., Fournier, R., Cuenot, B.: Comparison of three spatial differencing schemes in discrete ordinates method using three-dimensional unstructured meshes. Int. J. Therm Sci. 44(9), 851–864 (2005)

    Article  Google Scholar 

  58. Jensen, K.A., Ripoll, J.F., Wray, A., Joseph, D., El Hafi, M: On various modeling approaches to radiative heat transfer in pool fires. Combust. Flame 148(4), 263–279 (2007)

    Article  Google Scholar 

  59. Poitou, D., Amaya, J., Duchaine, F.: Parallel computation for the radiative heat transfer using the dom in combustion applications: direction, frequency, sub-domain decompositions and hybrid methods. Numer. Heat. Tran. Part B, 62–1 (2012)

  60. Truelove, J.S.: Discrete-ordinate solutions of the radiation transport equation. J. Heat Trans. 109, 1048–1051 (1987)

    Article  Google Scholar 

  61. Soufiani, A., Taine, J.: High temperature gas radiative propriety parameters of statistical narrow-band model for H 2 O, C O 2 and CO and correlated-k model for H 2 O and C O 2. Tech. Notein Int. J. Heat Mass Tran. 40, 987–991 (1997)

    Article  Google Scholar 

  62. Goodwin, D.G.: Cantera code site (2009)

  63. Xu, F., Sunderland, P.B., Faeth, G.M.: Soot formation in laminar premixed ethylene/air flames at atmospheric pressure. Combust. Flame 108, 471–493 (1997)

    Article  Google Scholar 

  64. Hernández, I.: Soot modeling and Large-Eddy Simulations of thermo-acoustic instabilities. PhD thesis, INP Toulouse (2011)

  65. Duchaine, F., Corpron, A., Pons, L., Moureau, V., Nicoud, F., Poinsot, T.: Development and assessment of a coupled strategy for conjugate heat transfer with Large Eddy simulation. Application to a cooled turbine blade. Int. J. Heat Mass Tran. 30, 1129–1141 (2009)

    Google Scholar 

  66. Wang, Y.: Direct Numerical Simulation of non-premixed combustion with soot and thermal radiation. PhD thesis, University of Maryland (2005)

  67. Goncalves dos Santos, R., Lecanu, M., Ducruix, S., Gicquel, O., Iacona, E., Veynante, D.: Coupled large eddy simulations of turbulent combustion and radiative heat transfer. Combust. Flame 152(3), 387–400 (2008)

    Article  Google Scholar 

  68. Lagarde, T., Piacentini, A., Thual, O.: A new representation of data-assimilation methods: The PALM flow-charting approach. Q. J. Roy. Meteorol. Soc. 127, 189–207 (2001)

    Article  Google Scholar 

  69. Luche, J.: Elaboration of reduced kinetic models of combustion. Application to a kerosene mechanism. PhD thesis, Université d’Orléans (2003)

  70. Davis, S.G., Law, C.K., Wang, H.: Propene pyrolysis and oxidation kinetics in a flow reactor and laminar flames. Combust. Flame 119, 375–399 (1999)

    Article  Google Scholar 

  71. Hwang, J.Y., Chung, S.H.: Growth of soot particles in counterflow diffusion flames of ethylene. Combust. Flame 125, 752–762 (2001)

    Article  Google Scholar 

  72. Liu, F., Guo, H., Smallwood, G.J., El Hafi, M.: Effects of gas and soot radiation on soot formation in counterflow ethylene diffusion flames. J. Quant. Spectrosc. Radiat. Transf. 84, 501–511 (2004)

    Article  Google Scholar 

  73. Amaya, J., Cabrit, O., Poitou, D., Cuenot, B., El Hafi, M.: Unsteady coupling of Navier-Stokes and radiative heat transfer solvers applied to an anisothermal multicomponent turbulent channel flow. J. Quant. Spectrosc. Radiat. Transf. 111(2), 295–301 (2010)

    Article  Google Scholar 

  74. Black, J.D., Johnson, M.P.: In-situ laser-induced incandescence of soot in an aero-engine exhaust, comparison with certification style measurements. Aerosp. Sci. Technol. 14, 329–337 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Lecocq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lecocq, G., Poitou, D., Hernández, I. et al. A Methodology for Soot Prediction Including Thermal Radiation in Complex Industrial Burners. Flow Turbulence Combust 92, 947–970 (2014). https://doi.org/10.1007/s10494-014-9536-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-014-9536-6

Keywords

Navigation