Skip to main content
Log in

Hybrid Transported-Tabulated Strategy to Downsize Detailed Chemistry for Numerical Simulation of Premixed Flames

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A strategy to introduce hydrocarbon combustion detailed chemistry into three-dimensional numerical simulation of flames is reported. Significant progress has been made recently in terms of accuracy and robustness in both chemical kinetics and flow computations. However, the highest resolution reached in simulation of practical burner does not yet ensure that the response of intermediate radical species is fully captured. In the method discussed, the full set of species and elementary reaction rates of the detailed mechanism are retained, but only species featuring non-zero concentration in fresh and burnt gases are transported with the flow. Intermediate chemical species, developing within thin flame layers, are expressed resorting to their self-similar properties observed in a series of canonical combustion problems, projected into an optimized progress variable defined from all transported species. The method is tested with success in various adiabatic and non-adiabatic laminar steady- and unsteady-strained premixed flames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bilger, R.W., Pope, S.B., Bray, K.N.C., Driscoll, J.F.: Paradigms in turbulent combustion research. Proc. Combust. Inst. 30(1), 21–42 (2005)

    Article  Google Scholar 

  2. Bradley, D., Kwa, L.K., Lau, A.K.C., Missaghi, M., Chin, S.B.: Laminar flamelet modeling of recirculating premixed methane and propane-air combustion. Combust. Flame 71(2), 109–122 (1988)

    Article  Google Scholar 

  3. Bray, K.N.C.: The challenge of turbulent combustion. Proc. Combust. Inst. 26, 1–26 (1996)

    Google Scholar 

  4. Bykov, V., Maas, U.: The extension of the ILDM concept to reaction-diffusion manifolds. Combust. Theory Model 11(6), 839–862 (2007)

    Article  MATH  Google Scholar 

  5. Candel, S., Schmitt, T., Darabiha, N.: Progress in transcritical combustion: Experimentation, modeling and simulation. 23rd ICDERS Conference, 2011

  6. Coriton, B., Smooke, M., Gomez, A.: Effect of the composition of the hot product stream in the quasi-steady extinction of strained premixed flames. Combust. Flame 157, 2155–2164 (2010)

    Article  Google Scholar 

  7. Curtiss, C.F., Hirschfelder, J.O.: Transport properties of multicomponent gas mixtures. J. Chem. Phys. 17, 550–555 (1949)

    Article  Google Scholar 

  8. Darabiha, N.: Transient behaviour of laminar counterflow hydrogen-air diffusion flames with complex chemistry. Combust. Sci. Tech. 86, 163–181 (1992)

    Article  Google Scholar 

  9. Delhaye, S., Somers, L., van Oijen, J., de Goey, L.: Incorporating unsteady flow-effects beyond the extinction limit in flamelet-generated manifolds. Proc. Combust. Inst. 32(1), 1051–1058 (2009)

    Article  Google Scholar 

  10. Domingo, P., Vervisch, L., Veynante, D.: Large-eddy simulation of a lifted methane-air jet flame in a vitiated coflow. Combust. Flame 152(3), 415–432 (2008)

    Article  Google Scholar 

  11. Esposito, G., Chelliah, H.K.: Skeletal reaction models based on principal component analysis: Application to ethylene-air ignition, propagation, and extinction phenomena. Combust. Flame 158(3), 477–489 (2011)

    Article  Google Scholar 

  12. Fiorina, B., Gicquel, O., Vervisch, L., Carpentier, S., Darabiha, N.: Approximating the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelet tabulation. Title. Combust. Flame 140, 147–160 (2005)

    Article  Google Scholar 

  13. Gicquel, O., Darabiha, N., Thevenin, D.: Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proc. Combust. Inst. 28, 1901–1908 (2000)

    Article  Google Scholar 

  14. Hawkes, E.R., Chen, J.H.: Comparion of direct numerical simulation of lean premixed methane-air flames with strained laminar flame calculations. Combust. Flame 144(1–2), 112–125 (2006)

    Article  Google Scholar 

  15. Ihme, M., Cha, C.M., Pitsch, H.: Prediction of local extinction and re-ignition effects in non-premixed turbulent combustion using a flamelet/progress variable approach. Proc. Combust. Inst. 30(1), 793–800 (2005)

    Article  Google Scholar 

  16. Ihme, M., See, Y.C.: Prediction of autoignition in a lifted methane/air flame using an unsteady flamelet/progress variable model. Combust. Flame 157(10) (2010)

  17. Ihme, M., Shunn, L., Zhang, J.: Regularization of reaction progress variable for application to flamelet-based combustion models. J. Comput. Phys. 231(23), 7715–7721 (2012)

    Article  Google Scholar 

  18. Juchmann, W., Latzel, H., Shin, D., Pieter, G., Dreier, T., Volpp, H., Lindstedt, R., Leung, K.: Absolute radical concentration measurements and modeling of low-pressure CH4 /O2 /NO flames. Proc. Combust. Inst. 27, 469–476 (1998)

    Google Scholar 

  19. Knudsen, E., Pitsch, H.: A general flamelet transformation useful for distinguishing between premixed and non-premixed modes of combustion. Combust. Flame 156(3), 678–696 (2009)

    Article  Google Scholar 

  20. Lam, S.H., Goussis, D.A.: The csp method for simplifying kinetics. Int. J. Chem. Kinet. 26, 461–486 (1994)

    Article  Google Scholar 

  21. Libby, P., Williams, F.: Structure of laminar flamelets in premixed turbulent flames. Combust. Flame 44(1/3), 287–303 (1982)

    Article  Google Scholar 

  22. Lindstedt, P.: Modeling of the chemical complexities of flames. Proc. Combust. Inst. 27, 269–285 (1998)

    Google Scholar 

  23. Lodier, G., Vervisch, L., Moureau, V., Domingo, P.: Composition-space premixed flamelet solution with differential diffusion for in situ flamelet-generated manifolds. Combust. Flame 158(10), 2009–2016 (2011)

    Article  Google Scholar 

  24. Moureau, V., Domingo, P., Vervisch, L.: From large-eddy simulation to direct numerical simulation of a lean premixed swirl flame: Filtered laminar flame-pdf modeling. Combust. Flame 158(7), 1340–1357 (2011)

    Article  Google Scholar 

  25. Nguyen, P., Vervisch, L., Subramanian, V., Domingo, P.: Multidimensional flamelet-generated manifolds for partially premixed combustion. Combust. Flame 157(1), 43–61 (2010)

    Article  Google Scholar 

  26. Niu, Y.S., Vervisch, L., Tao, P.D.: An optimization-based approach to detailed chemistry tabulation: Automated progress variables definition. Combust. Flame 160(4), 776–785 (2013)

    Article  Google Scholar 

  27. van Oijen, J.A., Lammers, F.A., de Goey, L.P.H.: Modeling of complex premixed burner systems by using flamelet-generated manifolds. Combust. Flame 127(3), 2124–2134 (2001)

    Article  Google Scholar 

  28. Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  29. Pierce, C., Moin, P.: Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. R.T. Edwards, Inc, Philadelphia (2005)

    Google Scholar 

  31. Pons, L., Darabiha, N., Candel, S., Ribert, G., Yang, V.: Mass transfer and combustion in transcritical non-premixed counterflows. Combust. Theory Model 13, 57–81 (2009)

    Article  MATH  Google Scholar 

  32. Pope, S.B.: Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust. Theory Model 1, 41–63 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  33. Ribert, G., Champion, M., Gicquel, O., Darabiha, N., Veynante, D.: Modeling nonadiabatic turbulent premixed reactive flows including tabulated chemistry. Combust. Flame 141, 271–280 (2005)

    Article  Google Scholar 

  34. Ribert, G., Gicquel, O., Darabiha, N., Veynante, D.: Tabulation of complex chemistry based on self-similar behaviour of laminar premixed flames. Combust. Flame 146(4), 649–664 (2006)

    Article  Google Scholar 

  35. Ribert, G., Wang, K., Vervisch, L.: A multi-zone self-similar chemistry tabulation with application to auto-ignition including cool-flames effects fuel. Fuel 91(1), 87–92 (2012)

    Article  Google Scholar 

  36. Ribert, G., Zong, N., Yang, V., Pons, L., Darabiha, N., Candel, S.: Counterflow diffusion flames of general fluids: Oxygen/hydrogen mixtures. Combust. Flame 154, 319–330 (2008)

    Article  Google Scholar 

  37. Rogg, B.: Response and flamelet structure of stretched premixed methane air flames. Combust. Flame 73(1), 45–65 (1988)

    Article  Google Scholar 

  38. Sen, B.A., Hawkes, E.R., Menon, S.: Large eddy simulation of extinction and reignition with artificial neural networks based chemical kinetics. Combust. Flame 157, 566–578 (2010)

    Article  Google Scholar 

  39. Smooke, M., Puri, I., Seshadri, K.: A comparison between numerical calculations and experimental measurements of the structure of a counterflow diffusion flame burning diluted methane in diluted air. Proc. Combust. Inst. 21(1), 1783–1792 (1988)

    Google Scholar 

  40. Subramanian, V., Domingo, P., Vervisch, L.: Large-eddy simulation of forced ignition of an annular bluff-body burner. Combust. Flame 157(3), 579–601 (2010)

    Article  Google Scholar 

  41. Sutherland, J., Parente, A.: Combustion modeling using principal component analysis. Proc. Combust. Inst. 32(1), 1563–1570 (2009)

    Article  Google Scholar 

  42. Vervisch, L., Hauguel, R., Domingo, P., Rullaud, M.: Three facets of turbulent combustion modelling: Dns of premixed v-flame, les of lifted nonpremixed flame and rans of jet-flame. J. Turbul. 5(4), 1–36 (2004)

    Google Scholar 

  43. Vreman, A.W., Albrecht, B.A., van Oijen, J.A., Bastiaans, R.J.M.: Premixed and nonpremixed generated manifolds in large-eddy simulation of sandia flame d and f. Combust. Flame 153(3), 394–416 (2008)

    Article  Google Scholar 

  44. Wang, K., Ribert, G., Domingo, P., Vervisch, L.: Self-similar behavior and chemistry tabulation of burnt-gases diluted premixed flamelets including heat-loss. Combust. Theory Model 4(14), 541–570 (2010)

    Article  Google Scholar 

  45. Williams, F.A.: Combustion theory. The Benjamin/Cummings Publishing Company, Inc, Redwood City (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ribert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribert, G., Vervisch, L., Domingo, P. et al. Hybrid Transported-Tabulated Strategy to Downsize Detailed Chemistry for Numerical Simulation of Premixed Flames. Flow Turbulence Combust 92, 175–200 (2014). https://doi.org/10.1007/s10494-013-9520-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-013-9520-6

Keywords

Navigation