Skip to main content

Coherent Structures in Oscillating Turbulent Boundary Layers Over a Fixed Rippled Bed


Coherent structures generated by oscillating turbulent boundary layers with or without a unidirectional current over a fixed, rippled bed are presented. The effect of ripple height and current intensity on the characteristics of these structures was investigated using a series of large-eddy simulations performed at Re α  = 23,163. These flows are typical in coastal regions where complex wave-current interactions occur. A cartesian flow solver was used with the rippled bed represented using the immersed boundary (IMB) method. Results are presented for three ripple steepness values and two current magnitudes. Three different types of coherent structures were identified with their size, shape and evolution largely depending on ripple steepness, while, their potential effect on sediment transport is discussed.

This is a preview of subscription content, access via your institution.


  1. 1.

    Albayrak, I., Hopfinger, E.J., Lemmin, U.: Near-field flow structure of a confined wall jet on flat and concave rough walls. J. Fluid Mech. 606, 27–49 (2008)

    Article  MATH  Google Scholar 

  2. 2.

    Balaras, E.: Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations. Comput. Fluids 33, 375–404 (2004)

    Article  MATH  Google Scholar 

  3. 3.

    Barr, B.C., Sinn, D.N., Pierro, T., Winters, K.B.: Numerical simulation of turbulent, oscillatory flow over sand ripples. J. Geophys. Res. 109(C09009) (2004). doi:10.1029/2002JC001709

    Article  Google Scholar 

  4. 4.

    Bowles, R.I.: Transition to turbulent flow in aerodynamics. Philos. Trans. R. Soc. Lond. A 358, 245–260 (2000)

    Google Scholar 

  5. 5.

    Calhoun, R., Street, R.: Vortical structures in flow over topography: an LES at laboratory-scale. In: Proc. 13th Symp. on Boundary Layers and Turbulence, pp. 227–230. AMS, New York (1999)

    Google Scholar 

  6. 6.

    Calhoun, R., Street, R.: Turbulent flow over a wavy surface: neutral case. J. Geophys. Res. 106, 9277–9294 (2001)

    Article  Google Scholar 

  7. 7.

    Chou, Y.-J., Fringer, O.B.: A model for the simulation of coupled flow-bed form evolution in turbulent flows. J. Geophys. Res. Oceans 115, C10041 (2010)

    Article  Google Scholar 

  8. 8.

    Chang, Y.S., Scotti A.: Entrainment and suspension of sediments into a turbulent flow over ripples. J. Turbul. 4(19), 1–22 (2003)

    Google Scholar 

  9. 9.

    Ducros, F.D., Comte, P.C., Lesieur, M.: Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate. J. Fluid Mech. 326, 1–36 (1996)

    Article  MATH  Google Scholar 

  10. 10.

    Fredsøe, J., Deigaard, R.: Mechanics of Coastal Sediment Transport. World Scientific, Singapore (1992)

    Google Scholar 

  11. 11.

    Fredsøe, J., Andersen, K.H., Sumer, B.M.: Wave plus current over a ripple-covered bed. Coast. Eng. 38, 177–221 (1999)

    Article  Google Scholar 

  12. 12.

    Grigoriadis, D.G.E., Balaras, E., Dimas, A.A.: Large-eddy simulation of wave turbulent boundary layer over rippled bed. Coast. Eng. 60, 174–189 (2012)

    Article  Google Scholar 

  13. 13.

    Grigoriadis, D.G.E., Balaras, E., Dimas, A.A.: Large-eddy simulations of unidirectional water flow over dunes. J. Geophys. Res. 114(F02022) (2009). doi:10.1029/2008JF001014

    Article  Google Scholar 

  14. 14.

    Henn, D.S., Sykes, R.I.: Large-eddy simulation of flow over wavy surfaces. J. Fluid Mech. 383, 75–112 (1999)

    Article  MATH  Google Scholar 

  15. 15.

    Hino, M., Kashiwayanagi, M., Nakayama, A., Hara, T.: Experiments on the turbulence statistics and the structure of a reciprocating oscillatory flow. J. Fluid Mech. 131, 363–400 (1983)

    Article  Google Scholar 

  16. 16.

    Hopfinger, E.J., Kurniawan, A., Graf, W.H., Lemmin, U.: Sediment erosion by Görtler vortices: the scour- hole problem. J. Fluid Mech. 520, 327–334 (2004)

    Article  MATH  Google Scholar 

  17. 17.

    Hunt, J.C.R., Wray, A.A., Moin, P.: Eddies, streams and convergence zones in turbulent flows. In: Proceedings of the 1988 Summer Program, p. 193. Center for Turbulence Research (1988)

  18. 18.

    Jensen, B.L, Sumer B.M., Fredsœ, J.: Turbulent oscillatory boundary layers at high Reynolds numbers. J. Fluid Mech. 206, 265–297 (1989)

    Article  Google Scholar 

  19. 19.

    Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Maaß, C., Schumann, U.: Direct numerical simulation of separated turbulent flow over a wavy boundary. In: Hirsche, E.H. (ed.) Flow Simulation with High Performance Computers. Notes on Numerical Fluid Mechanics, vol. 52, pp. 227–241 (1996)

  21. 21.

    Nielsen, P.: Dynamics and geometry of wave-generated ripples. J. Geophys. Res. 86(C7), 6467–6472 (1981)

    Article  Google Scholar 

  22. 22.

    O’Donoghue, T., Doucette, J.S., van der Werf, J.J., Ribberink, J.S.: The dimensions of sand ripples in full-scale oscillatory flows. Coast. Eng. 53, 997–1012 (2006)

    Article  Google Scholar 

  23. 23.

    Osborne, P.D., Vincent, C.E.: Vertical and horizontal structure in susspended sand concentrations and wave-induced fluxes over bedforms. Mar. Geol. 131, 195–208 (1996)

    Article  Google Scholar 

  24. 24.

    Ribberink, J.S., van der Werf, J.J., O’Donoghue, T., Hassan, W.N.M.: Sand motion induced by oscillatory flows: Sheet flow and vortex ripples. J. Turbul. 9(20), 1–32 (2008)

    Google Scholar 

  25. 25.

    Salon, S., Armenio, V., Crise, A.: A numerical investigation of the Stokes boundary layer in the turbulent regime. J. Fluid Mech. 570, 253–296 (2007)

    Article  MATH  Google Scholar 

  26. 26.

    Salon, S., Armenio, V., Crise, A.: A numerical investigation of the turbulent StokesEkman bottom boundary layer. J. Fluid Mech. 684, 316–352 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Scandura, P., Blondeaux, P., Vittori, G.: Three-dimensional oscillatory flow over steep ripples. J. Fluid Mech. 412, 355–378 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Scotti, A., Piomelli, U.: Numerical simulation of pulsating turbulent channel. Phys. Fluids 13(5), 1367–1384 (2001)

    Article  Google Scholar 

  29. 29.

    Wallace, J.M., Eckelmann, H., Brodkey, R.S.: The wall region in turbulent shear flow. J. Fluid Mech. 54(1), 39–48 (1972)

    Article  Google Scholar 

  30. 30.

    Wiberg, P.L., Harris, C.E.: Ripple geometry in wave-dominated environments. J. Geophys. Res. 99(C1), 775–789 (1994)

    Article  Google Scholar 

  31. 31.

    Wilcox, D.C.: Turbulence Modeling for CFD, 2nd edn. DCW Ind., La Canada, California (1998)

  32. 32.

    Zedler, E.A., Street, R.L.: Large-eddy simulation of sediment transport: current over ripples. J. Hydraul. Eng. 127, 444–452 (2001)

    Article  Google Scholar 

  33. 33.

    Zedler, E.A., Street, R.L.: Sediment transport over ripples in oscillatory flow. J. Hydraul. Eng. 132, 180–193 (2006)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to D. G. E. Grigoriadis.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(GIF 40.6 MB)

(GIF 39.6 MB)

(GIF 39.8 MB)

(GIF 39.4 MB)

(GIF 39.5 MB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grigoriadis, D.G.E., Balaras, E. & Dimas, A.A. Coherent Structures in Oscillating Turbulent Boundary Layers Over a Fixed Rippled Bed. Flow Turbulence Combust 91, 565–585 (2013).

Download citation


  • LES
  • Oscillatory boundary layer
  • Coherent structures
  • Finite difference methods
  • Immersed boundary method