Flow, Turbulence and Combustion

, Volume 91, Issue 3, pp 519–539 | Cite as

A New Divergence Free Synthetic Eddy Method for the Reproduction of Inlet Flow Conditions for LES

  • R. Poletto
  • T. Craft
  • A. Revell


This paper describes a recent development of the Synthetic Eddy Method (SEM) proposed by Jarrin et al. (Int J Heat Fluid Flow 30(3):435–442, 2009) for generation of synthetic turbulence. The present scheme is designed to produce a divergence-free turbulence field that can reproduce almost all possible states of Reynolds stress anisotropy. This improved representation, when used to provide inlet conditions for an LES, leads to reduced near-inlet pressure fluctuations in the LES and to a reduced development length, both of which lead to lower computer resource requirements. An advantage of this method with respect to forcing approaches (which require an iterative approach) is the suitability for direct usage with embedded LES. Results for a turbulent channel flow are reported here and compared to those from the original SEM, and other direct approaches such as the VORTEX method of Sergent (2002) and the Synthesized Turbulence approach of Davidson and Billson (Int J Heat Fluid Flow 27(6):1028–1042, 2006), showing overall improved performance and a more accurate representation of turbulence structures immediately downstream of the inlet.


Synthetic turbulence Synthetic Eddy method SEM Embedded LES 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Batten, P., Goldberg, U., Chakravarthy, S.: Interfacing statistical turbulence closures with large-eddy simulation. AIAA J. 42(3), 485–492 (2004)CrossRefGoogle Scholar
  2. 2.
    Celik, I.B., Cehreli, Z.N., Yavuz, I.: Index of resolution quality for large eddy simulations. In: Journal of Fluids Engineering, vol. 127. American Society of Mechanical Engineers, New York, NY, ETATS-UNIS (undefined Anglais) (2005)Google Scholar
  3. 3.
    Davidson, L., Billson, M.: Hybrid LES-RANS using synthesized turbulent fluctuations for forcing in the interface region. Int. J. Heat Fluid Flow 27(6), 1028–1042 (2006)CrossRefGoogle Scholar
  4. 4.
    De Meut, B.D.L.: Modélisation des écoulements turbulents en rotation et en présence de transferts thermiques par approche hybride RANS/LES zonale. Ph.D. thesis, Ecole Nationale Supérieure de Mécanique et d’Aérotechnique-Poitiers (2012)Google Scholar
  5. 5.
    Druault, P., Lardeau, S., Bonnet, J.-P., Coiffet, F., Delville, J., Lamballais, E., Largeau, J.-F., Perret, L.: Generation of three-dimensional turbulent inlet conditions for large-eddy simulation. AIAA J. 42(3), 447–456 (2004)CrossRefGoogle Scholar
  6. 6.
    Glaze, D.J., Frankel, S.H.: Stochastic inlet conditions for large-eddy simulation of a fully turbulent jet. AIAA J. 41(6), 1064–1073 (2003)CrossRefGoogle Scholar
  7. 7.
    Jarrin, N., Prosser, R., Uribe, J.-C., Benhamadouche, S., Laurence, D.: Reconstruction of turbulent fluctuations for hybrid RANS/LES simulations using a synthetic-eddy method. Int. J. Heat Fluid Flow 30(3), 435–442 (2009)CrossRefGoogle Scholar
  8. 8.
    Lund, T.S., Wu, X., Squires, K.D.: Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140(2), 233–258 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    di Mare, L., Klein, M., Jones, W.P., Janicka, J.: Synthetic turbulence inflow conditions for large-eddy simulation. Phys. Fluids 18(2), 025107 (2006)CrossRefGoogle Scholar
  10. 10.
    Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to Reτ = 590. Phys. Fluids 11(4), 943–945 (1999)CrossRefzbMATHGoogle Scholar
  11. 11.
    Pamis, M., Weiss, P.-L., Garnier, E., Deck, S., Sagaut, P.: Generation of synthetic turbulent inflow data for large eddy simulation of spatially evolving wall-bounded flows. Phys. Fluids 21(4), 045103 (2009)CrossRefGoogle Scholar
  12. 12.
    Poletto, R., Revell, A., Craft, T., Jarrin, N.: Divergence free synthetic eddy method for embedded les inflow boundary conditions. In: Seventh International Symposium On Turbulence and Shear Flow Phenomena (TSFP-7), Ottawa (2011)Google Scholar
  13. 13.
    Sagaut, P., Deck, S., Terracol, M.: Multiscale and Multiresolution Approaches in Turbulence. Imperial College Press London. ISBN: 186094650X (2006)Google Scholar
  14. 14.
    Sergent, M.E.: Vers une methodologie de couplage entre la simulation des grande echelles et les modeles statistiques. Ph.D. thesis, Ecole Central de Lyon (2002)Google Scholar
  15. 15.
    Smagorinsky, J.: General circulation experiments with the primitive equations: I. The basic experiment*. Mon. Weather Rev. 91(3), 99–164 (1963)CrossRefGoogle Scholar
  16. 16.
    Tabor, G.R., Baba-Ahmadi, M.H.: Inlet conditions for large eddy simulation: a review. Comput. Fluids 39(4), 553–567 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Van Driest, E.R.: On turbulent flow near a wall. J. Aerosol Sci. 23(11), 1007–1011 (1956)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.School of Mechanical Aerospace and Civil EngineeringThe University of ManchesterManchesterUK

Personalised recommendations