Skip to main content
Log in

Large-eddy Simulation of Motored Flow in a Two-valve Piston Engine: POD Analysis and Cycle-to-cycle Variations

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Large-eddy simulation (LES) has been performed for a single-cylinder, two-valve, four-stroke-cycle piston engine through 70 consecutive motored cycles. Initial comparisons of ensemble-averaged velocity fields have been made between LES and experiment, and proper orthogonal decomposition (POD) has been used to analyze the complex in-cylinder turbulent flows. Convergence of POD modes has been quantified, several POD variants have been explored, and sensitivity of results to analyzing different subsets of engine cycles has been studied. In general, it has been found that conclusions that were drawn earlier from POD analysis of a simplified non-compressing piston-cylinder assembly with a fixed valve carry over to the much more complex flow in this motored four-stroke-cycle engine. For the cases that have been examined, the first POD mode essentially corresponds to the ensemble-averaged mean velocity. The number of engine cycles required to extract converged POD modes increases with mode number, and varies with phase (piston position). There is little change in the lower-order phase-invariant POD modes when as few as 24 phases per cycle (30° between samples) are used, and complex 3-D time-dependent in-cylinder velocity fields through full engine cycles can be reconstructed using a relatively small number of POD modes. Quantification of cycle-to-cycle variations and insight into in-cylinder flow dynamics can be extracted through analysis of phase-invariant POD modes and coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eckerle, W., Rutland, C.J.: A workshop to identify research needs and impacts in predictive simulation for internal combustion engines. Tech. rep., U. S. Department of Energy. http://www1.eere.energy.gov/vehiclesandfuels (2011)

  2. Heywood, J.B.: Internal Combustion Engine Fundamentals. McGraw-Hill, New York (1988)

    Google Scholar 

  3. Reuss, D.L., Adrian, R.J., Landreth, C.C., French, D.T., Fansler, T.D.: Instantaneous planar measurements of velocity and large-scale vorticity and strain rate in an engine using particle image velocimetry. SAE paper, no. 890616 (1989)

  4. Reuss, D.L., Kuo, T.W., Khalighi, B., Haworth, D.C., Martin, R.: Particle Image Velocimetry measurents in a high-swirl engine used for evaluation of computational fluid dynamics calculations. SAE paper, no. 952381 (1995)

  5. Reuss, D.L.: Cyclic variability of large scale turbulent structure in directed and undirected IC engine flows. SAE paper, no. 2000-01-0246 (2000)

  6. Druault, P., Guibert, P., Alizon, F.: Use of proper orthogonal decomposition for time interpolation from PIV data application to the cycle-to-cycle variation analysis of in-cylinder engine flows. Exp. Fluids 39, 1009–1023 (2005)

    Article  Google Scholar 

  7. Kapitza, L., Imberdis, O., Bensler, H.P., Willand, J., Thévenin, D.: An experimental analysis of the turbulent structures generated by the intake port of a DISI-engine. Exp. Fluids 48(2), 265–280 (2009)

    Article  Google Scholar 

  8. Voisine, M., Thomas, L., Borée, J., Rey, P.: Spatio-temporal structure and cycle to cycle variations of an in-cylinder tumble flow. Exp. Fluids 50(5), 1393–1407 (2010)

    Article  Google Scholar 

  9. Chen, H., Reuss, D.L., Sick, V.: Analysis of misfires in a direct injection engine using proper orthogonal decomposition. Exp. Fluids 51(4), 1139–1151 (2011)

    Article  Google Scholar 

  10. Cosadia, I., Borée, J., Charnay, G., Dumont, P.: Cyclic variations of the swirling flow in a diesel transparent engine. Exp. Fluids 41, 115–134 (2006)

    Article  Google Scholar 

  11. Cosadia, I., Borée, J., Dumont, P.: Coupling time-resolved PIV flow-fields and phase-invariant proper orthogonal decomposition for the description of the parameters space in a transparent diesel engine. Exp. Fluids 43, 357–370 (2007)

    Article  Google Scholar 

  12. Bizon, K., Continillo, G., Leistner, K., Mancaruso, E., Vaglieco, B.: POD-based analysis of cycle-to-cycle variations in an optically accessible diesel engine. Proc. Combust. Inst. 32, 2809–2816 (2009)

    Article  Google Scholar 

  13. El Tahry, S.H., Haworth, D.C.: Directions in turbulence modeling for in-cylinder flows in reciprocating engines. AIAA J. Propuls. Power 8, 1040–1048 (1992)

    Article  Google Scholar 

  14. Haworth, D.C., Jansen, K.: Large-eddy simulation on unstructured deforming meshes: towards reciprocating IC engines. Comput. Fluids 29, 493–524 (2000)

    Article  Google Scholar 

  15. Haworth, D.C.: A review of turbulent combustion modeling for multidimensional in-cylinder CFD. SAE paper, no. 2005-01-0993 (2005)

  16. Drake, M.C., Haworth, D.C.: Advanced gasoline engine development using optical diagnostics and numerical modeling. Proc. Combust. Inst. 32, 99–124 (2007)

    Article  Google Scholar 

  17. Celik, I.B., Yavuz, I., Smirnov, A.: Large eddy simulations of in-cylinder turbulence for internal combustion engines: a review. Int. J. Engine Res. 2(2), 119–148 (2001)

    Article  Google Scholar 

  18. Haworth, D.C.: Large-eddy simulation of in-cylinder flows. In: Oil and Gas Science and Technology, (Revue de l’Institut Français du Pétrole), vol. 54, pp. 175–185 (1999)

  19. Celik, I.B., Yavuz, I., Smirnov, A., Smith, J., Amin, E., Gel, A.: Prediction of in-cylinder turbulence for IC engines. Combust. Sci. Technol. 153(1), 339–368 (2000)

    Article  Google Scholar 

  20. Celik, I.B., Amin, E., Smith, J., Yavuz, I., Gel, A.: Towards large eddy simulation using the KIVA-code. In: 11th Intenational Multidimensional Engine Modeling User’s Group Meeting. Detroit, Michigan (1998)

  21. Amsden, A.A., O’Rourke, P.J., Butler, T.D.: KIVA: a computer program for two-and three-dimensional fluid flows with chemical reactions and fuel sprays. Tech. Rep. LA-10245-MS, Los Alamos National Laboratory (1985)

  22. Naitoh, K., Itoh, T., Takagi, Y., Kuwahara, K.: Large eddy simulation of premixed-flame in engine based on the multi-level formulation and renormalization group theory. SAE paper, no. 920590 (1992)

  23. Smirnov, A., Yavuz, I., Celik, I.B.: Diesel combustion and LES of in-cylinder turbulence for IC engines. In: In-Cylinder Flows and Combustion Processes, ASME Fall Technical Conference. Ann Arbor, Michigan (1999)

  24. Smith, J., Smirnov, A., Yavuz, I., Celik, I.B.: Simulation of swirling flows related to an intake stroke of a diesel engine. In: ASME ICE-Division Fall Conference. Clymer, New York (1998)

  25. Vermorel, O., Richard, S., Colin, O., Angelberger, C., Benkenida, A.: Multi-cycle LES simulations of flow and combustion in PFI SI 4-valve production engine. SAE paper, no. 2007-01-0151 (2007)

  26. Richard, S., Colin, O., Vermorel, O., Benkenida, A., Angelberger, C., Veynante, D.: Towards large eddy simulation of combustion in spark ignition engines. Proc. Combust. Inst. 31, 3059–3066 (2007)

    Article  Google Scholar 

  27. Vermorel, O., Richard, S., Colin, O., Angelberger, C., Benkenida, A., Veynante, D.: Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle LES. Combust. Flame 156, 1525–1541 (2009)

    Article  Google Scholar 

  28. Laget, O., Reveille, B., Martinez, L., Truffin, K., Habchi, C., Angelberger, C.: LES calculations of a four cylinder engine. SAE paper, no. 2011-01-0832 (2011)

  29. Granet, V., Vermorel, O., Lacour, C., Enaux, B., Dugué, V., Poinsot, T.: Large-eddy simulation and experimental study of cycle-to-cycle variations of stable and unstable operating points in a spark ignition engine. Combust. Flame 159, 1562–1575 (2012)

    Article  Google Scholar 

  30. Hu, B., Rutland, C.J.: Flamelet modeling with LES for diesel engine simulations. SAE paper, no. 2006-01-0058 (2006)

  31. Hu, B., Jhavar, R., Singh, S., Reitz, R.D., Rutland, C.J.: LES modeling of diesel combustion under partially premixed and non-premixed conditions. SAE paper, no. 2007-01-0163 (2007)

  32. Hu, B., Rutland, C.J., Shethaji, T.: Combustion modeling of conventional diesel-type and HCCI type diesel combustion with LES. SAE paper, no. 2008-01-0958 (2008)

  33. Enaux, B., Granet, V., Vermorel, O., Lacour, L., Thobois, C., Dugue, V., Poinsot, T.: Large eddy simulation of a motored single-cylinder piston engine: numerical strategies and validation. Flow Turbulence Combust. 86, 153–177 (2011)

    Article  MATH  Google Scholar 

  34. Banerjee, S., Rutland, C.J., Hu, B.: Gasoline direct injection—SULEV emission concept. SAE paper, no. 2010-01-0361 (2010)

  35. Zhang, Y., Ghandhi, J., Petersen, B., Rutland, C.J.: Large eddy simulation of scalar dissipation rate in an internal combustion engine. SAE paper, no. 2010-01-0625 (2010)

  36. Zhang, Y., Rutland, C.J.: A mixing controlled direct chemistry (MCDC) model for diesel engine combustion modelling using large-eddy simulation. Combust. Theory Model. 16, 571–588 (2012)

    Article  MATH  Google Scholar 

  37. Rutland, C.J.: Large-eddy simulations for internal combustion engines—a review. Int. J. Engine Res. 12(4), 421–451 (2011)

    Article  Google Scholar 

  38. Angelberger, C.: International conference on LES for internal combustion engine flows. In: IFP Energies Nouvelles. Rueil-Malmaison, France. http://www.les4ice.org (2012)

  39. Liu, K., Haworth, D.C.: Large-eddy simulation for an axisymmetric piston-cylinder assembly with and without swirl. Flow Turbulence Combust. 85, 279–307 (2010)

    Article  MATH  Google Scholar 

  40. Liu, K., Haworth, D.C.: Development and assessment of POD for analysis of turbulent flow in piston engines. SAE paper, no. 2011-01-0830 (2011)

  41. Fogleman, M.A., Lumley, J., Rempfer, D., Haworth, D.C.: Application of the proper orthogonal decomposition to datasets of internal combustion engine flows. J. Turbul. 5(23) (2004)

  42. Fogleman, M.A.: Low-Dimensional Models of Internal Combustion Engine Flows Using the Proper Orthogonal Decomposition. PhD thesis, Cornell University, Ithaca, NY (2005)

  43. Hilberg, D., Lazik, W., Fiedler, H.E.: The application of classical POD and snapshot POD in a turbulent shear layer with periodic structures. Appl. Sci. Res. 53, 283–291 (1994)

    Article  Google Scholar 

  44. Moreau, J., Fogleman, M., Charnay, G., Borée, J.: Phase invariant proper orthogonal decomposition for the study of a compressed vortex. J. Therm. Sci. 14, 108–113 (2005)

    Article  Google Scholar 

  45. Kuo, T.-W., Reuss, D.L.: Multidimensional port-and-cylinder flow calculations for the transparent-combustion-chamber engine. In: ASME, ICE-Vol, vol. 23, pp. 19–29 (1995)

  46. Funk, C., Sick, V., Reuss, D.L., Dahm, W.A.: Turbulence properties of high and low swirl in-cylinder flows. SAE paper, no. 2002-01-2841 (2002)

  47. Gamma Technologies: GT-Power. http://www.gtisoft.com (2011)

  48. Speziale, C.G.: Analytical methods for the development of Reynolds-stress closures in turbulence. Ann. Rev. Fluid Mech. 23, 107–157 (1991)

    Article  MathSciNet  Google Scholar 

  49. Yoshizawa, A.: Statistical theory for compressible turbulent shear flows, with the application to subgrid scale modeling. Phys. Fluids 29, 2152–2164 (1986)

    Article  MATH  Google Scholar 

  50. Spalding, D.B.: A single formula for the law of the wall. J. Appl. Mech. 28, 455–457 (1961)

    Article  MATH  Google Scholar 

  51. CD-adapco: Methodology for STAR-CD VERSION 4.16. http://www.cd-adapco.com (2011)

  52. CD-adapco: User guide for STAR-CD VERSION 4.16. http://www.cd-adapco.com (2011)

  53. Asproulis, P.N.: High Resolution Numerical Predictions of Hypersonic Flows on Unstructured Meshes. PhD thesis, Imperial College, London, England (1994)

  54. Issa, R.I.: Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62, 40–65 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  55. Issa, R.I., Gosman, A.D., Watkins, A.P.: The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme. J. Comput. Phys. 62, 66–82 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  56. CD-adapco: User guide for esice VERSION 4.16. http://www.cd-adapco.com (2010)

  57. Lumley, J.L.: The structure of inhomogeneous turbulent fows. In: Yaglom, A.M., Tararsky, V.I. (eds.) Atmospheric Turbulence and Radio Wave Propagation, pp. 166–178. Nauka, Moscow (1967)

    Google Scholar 

  58. Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent fows. Ann. Rev. Fluid Mech. 25, 539–575 (1993)

    Article  MathSciNet  Google Scholar 

  59. Sirovich, L.: Turbulence and the dynamics of coherent structures. Q. Appl. Math. 45, 561–590 (1987)

    MathSciNet  MATH  Google Scholar 

  60. Hekmati, A., Ricot, D., Druault, P.: About the convergence of POD and EPOD modes computed from CFD simulation. Comput. Fluids 50, 60–71 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel C. Haworth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, K., Haworth, D.C., Yang, X. et al. Large-eddy Simulation of Motored Flow in a Two-valve Piston Engine: POD Analysis and Cycle-to-cycle Variations. Flow Turbulence Combust 91, 373–403 (2013). https://doi.org/10.1007/s10494-013-9475-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-013-9475-7

Keywords

Navigation