Flow, Turbulence and Combustion

, Volume 91, Issue 4, pp 749–772 | Cite as

Combustion of Low-Calorific Waste Biomass Syngas

  • Kamil KwiatkowskiEmail author
  • Marek Dudyński
  • Konrad Bajer
Open Access


The industrial combustion chamber designed for burning low-calorific syngas from gasification of waste biomass is presented. For two different gases derived from gasification of waste wood chips and turkey feathers the non-premixed turbulent combustion in the chamber is simulated. It follows from our computations that for stable process the initial temperature of these fuels must be at least 800 K, with comparable influx of air and fuel. The numerical simulations reveal existence of the characteristic frequency of the process which is later observed in high-speed camera recordings from the industrial gasification plant where the combustion chamber operates. The analysis of NO formation and emission shows a difference between wood-derived syngas combustion, where thermal path is prominent, and feathers-derived fuel. In the latter case thermal, prompt and N2O paths of nitric oxides formation are marginal and the dominant source of NO is fuel-bound nitrogen.


Biomass Waste Gasification Syngas Turbulent combustion 


  1. 1.
    Warnecke, R.: Gasification of biomass: comparison of fixed bed and fluidized bed gasifier. Biomass Bioenerg. 18(6), 489–497 (2000)CrossRefGoogle Scholar
  2. 2.
    Arena, U.: Process and technological aspects of municipal solid waste gasification. A review. Waste Manage. 32(4), 625–639 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Beenackers, A.: Biomass gasification in moving beds, a review of European technologies. Renew. Energ. 16(1–4), 1180–1186 (1999)CrossRefGoogle Scholar
  4. 4.
    Dudyński, M., Kwiatkowski, K., Bajer, K.: From feathers to syngas—technologies and devices. Waste Manage. 32(4), 685–691 (2012)CrossRefGoogle Scholar
  5. 5.
    Dudyński, M., Kwiatkowski, K., Sosnowska, M.: Solid residues from gasification of biomass. In: 14th International Waste Management and Landfill Symposium (2013)Google Scholar
  6. 6.
    Igawa, S., Yamagishi, T., Matsui, T.: Steam production from spent mushroom bed applying fixed-bed gasification technique. In: Proceedings of 19th European Biomass Conference and Exhibition, pp. 1314–1318 (2011)Google Scholar
  7. 7.
    Lee, S., Choi, K., Lee, J., Kim, J.: Gasification characteristics of combustible wastes in a 5 ton/day fixed bed gasifier. Korean J. Chem. Eng. 23, 576–580 (2006)CrossRefGoogle Scholar
  8. 8.
    Pereira, E.G., da Silva, J.N., de Oliveira, J.L., Machado, C.S.: Sustainable energy: A review of gasification technologies. Renew. Sust. Energ. Rev. 16(7), 4753–4762 (2012)CrossRefGoogle Scholar
  9. 9.
    Kwiatkowski, K., Bajer, K., Wȩdołowski, K.: Turbulent combustion of biomass syngas. Arch. Mech. 64, 511–527 (2012)Google Scholar
  10. 10.
    Wei, Z., Li, X., Xu, L., Tan, C.: Optimization of operating parameters for low NOx emission in high-temperature air combustion. Energ. Fuel 26, 2821–2829 (2012)CrossRefGoogle Scholar
  11. 11.
    Andersen, J., Jensen, P.A., Hvid, S.L., Glarborg, P.: Experimental and numerical investigation of gas-phase freeboard combustion. Part 2: fuel NO formation. Energ. Fuel 23(12), 5783–5791 (2009)CrossRefGoogle Scholar
  12. 12.
    Andersen, J., Jensen, P.A., Meyer, K.E., Hvid, S.L., Glarborg, P.: Experimental and numerical investigation of gas-phase freeboard combustion. Part 1: main combustion process. Energ. Fuel 23(12), 5773–5782 (2009)CrossRefGoogle Scholar
  13. 13.
    Coelho, P.J., Peters, N.: Numerical simulation of a mild combustion burner. Combust. Flame 124(3), 503–518 (2001)CrossRefGoogle Scholar
  14. 14.
    Mancini, M., Schwöppe, P., Weber, R., Orsino, S.: On mathematical modelling of flameless combustion. Combust. Flame 150, 54–59 (2007)CrossRefGoogle Scholar
  15. 15.
    Shuster, A., Zieba, M., Scheffkecht, G., Wunning, J.: Optimisation of conventional biomass combustion system by applying Flameless Oxidation. In: 15th IFRF Members Conference, Pisa, Italy (2007)Google Scholar
  16. 16.
    Al-Halbouni, A., Rahms, H., Gorner, K.: An efficient combustion concept for low calorific gases. In: International Conference on Renewable Energies and Power Quality ICREPQ’07 (2007)Google Scholar
  17. 17.
    Ilmurzynska, J., Jagiello, K., Re miszewski, K.: Badanie procesu spalania gazu ze zgazowania biomasy w palniku typy flox w instalacji zakładu zamer. Tech. rep., Institute of Power Engineering, Warsaw (2007) (in Polish)Google Scholar
  18. 18.
    Kwiatkowski, K., Górecki, B., Gryglas, W., Korotko, J., Dudyński, M., Bajer, K.: Numerical modeling of biomass pyrolysis-heat and mass transport models. Numer. Heat Transf. Part A 64(3), 216–234 (2013)CrossRefGoogle Scholar
  19. 19.
    Kwiatkowski, K., Krzysztoforski, J., Bajer, K., Dudyński, M.: Gasification of feathers for energy production—a case study. In: Proceedings of 20th European Biomass Conference and Exhibition, Milan 2012, pp. 1858–1862 (2012)Google Scholar
  20. 20.
    Kwiatkowski, K., Krzysztoforski, J., Bajer, K., Dudyński, M.: The efficency of heat production from the gasification of feathers. In: Venice Symposium 2012, Fourth International Symposium on Energy from Biomass and Waste. CISA Publisher, Italy (2012)Google Scholar
  21. 21.
    Marculescu, C., Stan, C.: Poultry processing industry waste to energy conversion. Energ. Procedia 6, 550–557 (2011)CrossRefGoogle Scholar
  22. 22.
    Chmielniak, T., Sciazko, M., Zawistowski, J., Dudyński, M.: Pilot-plat scale tests on fixed-bed biomass gasification technology. Chem. Rev. 85(8–9), 1247–1251 (2006) (in Polish)Google Scholar
  23. 23.
    Kwiatkowski, K., van Dyk, J.: Industrial experiment on fixed-bed gasification with biomass in poland. part 1: operation observations and mass balance. Tech. rep., Sasol Technology (2013)Google Scholar
  24. 24.
    Peters, N.: Turbulent Combustion. Cambridge University Press (2000)Google Scholar
  25. 25.
    Peters, N.: Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energ. Combust. Sci. 10(3), 319–339 (1984)CrossRefGoogle Scholar
  26. 26.
    ANSYS Fluent 13. Theory Guide, Ansys Inc., Canonsburg, US (2010)Google Scholar
  27. 27.
    Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C., Lissianski, V.V., Qin, Z.: Accessed 7 Mar 2012
  28. 28.
    Chemical-kinetic Mechanisms for Combustion Applications: San diego mechanism web page, Mechanical and Aerospace Engineering (Combustion Research) University of California at San Diego. Accessed 7 Mar 2012
  29. 29.
    Hori, M., Matsunaga, N., Marinov, N., Pitz, W., Westbrook, C.: An experimental and kinetic calculation of the promotion effect of hydrocarbons on the NO-NO2 conversion in a flow reactor. Proc. Combust. Inst. 1, 389–396 (1998)Google Scholar
  30. 30.
    Abtahizadeh, E., van Oijen, J., de Goey, P.: Numerical study of mild combustion with entrainment of burned gas into oxidizer and/or fuel streams. Combust. Flame 159(6), 2155–2165 (2012)CrossRefGoogle Scholar
  31. 31.
    de Joannon, M., Sorrentino, G., Cavaliere, A.: MILD combustion in diffusion-controlled regimes of hot diluted fuel. Combust. Flame 159(5), 1832–1839 (2012)CrossRefGoogle Scholar
  32. 32.
    Aminian, J., Galletti, C., Shahhosseini, S., Tognotti, L.: Numerical investigation of a MILD combustion burner: analysis of mixing field, chemical kinetics and turbulence-chemistry interaction. Flow Turbulence Combust. 88, 597–623 (2012)CrossRefzbMATHGoogle Scholar
  33. 33.
    Kwiatkowski, K., Jasiński, D., Bajer, K.: Numerical simulations of industrialscale combustion chamber—LES versus RANS. J. Phys. Conf. Ser. 318, 092009 (2011)CrossRefGoogle Scholar
  34. 34.
    Hill, S., Smoot, L.D.: Modeling of nitrogen oxides formation and destruction in combustion systems. Prog. Energ. Combust. Sci. 26(4–6), 417–458 (2000)CrossRefGoogle Scholar
  35. 35.
    Turns, S.: An Introduction to Combustion: Concepts and Applications. McGraw-Hill Education (2011)Google Scholar
  36. 36.
    Warnatz, J., Maas, U., Dibble, R.: Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation. Springer (2006)Google Scholar
  37. 37.
    Sethuraman, S., Huynh, C.V., Kong, S.C.: Producer gas composition and NOx emissions from a pilot-scale biomass gasification and combustion system using feedstock with controlled nitrogen content. Energ. Fuel 25(2), 813–822 (2011)CrossRefGoogle Scholar
  38. 38.
    Stubenberger, G., Scharler, R., Zahirovic, S., Obernberger, I.: Experimental investigation of nitrogen species release from different solid biomass fuels as a basis for release models.. Fuel 87(6), 793–806 (2008)CrossRefGoogle Scholar
  39. 39.
    Mandl, C., Obernberger, I., Scharler, I.: Characterisation of fuel bound nitrogen in the gasification process and the staged combustion of producer gas from the updraft gasification of softwood pellets. Biomass Bioenergy 35(11), 4595–4604 (2011)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  • Kamil Kwiatkowski
    • 1
    • 2
    Email author
  • Marek Dudyński
    • 1
    • 3
    • 4
  • Konrad Bajer
    • 1
    • 2
  1. 1.Faculty of PhysicsUniversity of WarsawWarsawPoland
  2. 2.Interdisciplinary Centre for Mathematical and Computational ModellingUniversity of WarsawWarsawPoland
  3. 3.Modern Technologies and Filtration Sp. z o.o.WarsawPoland
  4. 4.Faculty of Mathematics, Informatics and MechanicsUniversity of WarsawWarsawPoland

Personalised recommendations