Flow, Turbulence and Combustion

, Volume 91, Issue 2, pp 319–346 | Cite as

Numerical Simulation with an Extinction Database for Use with the Eddy Dissipation Concept for Turbulent Combustion

  • Bjørn Lilleberg
  • Dominik Christ
  • Ivar S. Ertesvåg
  • Kjell Erik Rian
  • Reinhold Kneer


A Local Extinction approach for treating chemical reaction kinetics within the Eddy Dissipation Concept (EDC) has been examined. It applies a database of pre-calculated chemical time scales, which contains the influence of chemical kinetics that is otherwise time-consuming to calculate. The approach was evaluated against experimental data for two piloted diffusion flames (Sandia/TNF Flame D and Flame E) and a piloted lean-premixed jet burner (PPJB). Results were also compared to the EDC with Fast Chemistry and with full Detailed Chemistry (GRI-Mech 3.0). All validation simulations were carried out using a standard k − ε turbulence model and the open-source CFD-toolbox OpenFOAM. The Local Extinction approach showed significantly better results than the Fast Chemistry approach while having a comparably small computational cost. For Flame D and the PPJB, the reactions along centerline and in the mixing layer near the nozzle, the reactions were reduced. For Flame E, the Local Extinciton model predicted some lift off of the flame. The Detailed Chemistry approach gave the best predictions compared to the experimental data, however the calculation effort was orders of magnitude higher.


Computational Modeling Combustion Local extinction Eddy Dissipation Concept Detailed chemical kinetics Perfectly Stirred Reactor (PSR) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amani, E., Nobari, M.R.H.: An efficient PDF calculation of flame temperature and major species in turbulent non-premixed flames. Appl. Math. Model. 34(8), 2223–2241 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Barlow, R.S., Frank, J.H.: Effects of turbulence on species mass fractions in methane/air jet flames. Proc. Combust. Inst. 27, 1087–1095 (1998)Google Scholar
  3. 3.
    Barlow, R., Frank, J., Dreizler, A.: International workshop on measurement and computation of turbulent nonpremixed flames. Sandia/TUD piloted CH4/air jet flames (2007). URL, Last visited March 2011
  4. 4.
    Barlow, R., Chen, J.Y., Dreizler, A., Dunn, M.J., Frank, J.H., Gordon, R., Hochgreb, S., Janicka, J., Kempf, A., Knudsen, E.W., Kronenburg, A., Lindstedt, R.P., Masri, A.R., Pitsch, H., Pope, S.B., Richardson, E.S., Roekaerts, D. (eds.): Tenth International Workshop on Measurement and Computation of Turbulent (Non)Premixed Flames, pp. 98–155 (2010). URL Last visited March 2011
  5. 5.
    Byggstøyl, S., Magnussen, B.F.: A model for flame extinction in turbulent flow. In: Fourth International Symposium on Turbulent Shear Flows, pp. 10.32–10.38 (1983)Google Scholar
  6. 6.
    Cleary, M., Klimenko, A., Janicka, J., Pfitzner, M.: A sparse-Lagrangian multiple mapping conditioning model for turbulent diffusion flames. Prog. Energy Combust. Sci. 32(1), 1499–1507 (2009)Google Scholar
  7. 7.
    Dally, B.B., Fletcher, D.F., Masri, A.R.: Flow and mixing fields of turbulent bluff-body jets and flames. Combust. Theory Model. 2(2), 193–219 (1998)zbMATHCrossRefGoogle Scholar
  8. 8.
    Dryer, F.L., Glassman, I.: High-temperature oxydation of CO and CH4. Proc. Combust. Inst. 14, 987–1003 (1973)Google Scholar
  9. 9.
    Dunn, M.J., Masri, A.R., Bilger, R.W.: A new piloted premixed jet burner to study strong finite-rate chemistry effects. Combust. Flame 151(1-2), 46–60 (2007)CrossRefGoogle Scholar
  10. 10.
    Dunn, M.J., Masri, A.R., Bilger, R.W., Barlow, R.S., Wang, G.H.: The compositional structure of highly turbulent piloted premixed flames issuing into a hot coflow. Proc. Combust. Inst. 32(2), 1779–1786 (2009)CrossRefGoogle Scholar
  11. 11.
    Dunn, M.J., Masri, A.R., Bilger, R.W., Barlow, R.S.: Finite rate chemistry effects in highly sheared turbulent premixed flames. Flow Turbul. Combust. 85(3–4, Sp. Iss. SI), 621–648 (2010)zbMATHCrossRefGoogle Scholar
  12. 12.
    Ertesvåg, I.S., Magnussen, B.F.: The eddy dissipation turbulence energy cascade model. Combust. Sci. Technol. 159, 213–235 (2000)CrossRefGoogle Scholar
  13. 13.
    Gran, I.R.: Mathematical modeling and numerical simulation of chemical kinetics in turbulent combustion. Dr. Ing. thesis no. 1994:49, The Norwegian Institute of Technology, University of Trondheim (1994)Google Scholar
  14. 14.
    Gran, I.R., Magnussen, B.F.: A numerical study of a bluff-body stabilized diffusion flame. Part 2. Influence of combustion modeling and finite-rate chemistry. Combust. Sci. Technol. 119, 191–217 (1996)CrossRefGoogle Scholar
  15. 15.
    Gran, I.R., Melaaen, M.C., Magnussen, B.F.: Numerical simulation of local extinction effects in turbulent combustor flows of methane and air. Proc. Combust. Inst. 25, 1283–1291 (1994)Google Scholar
  16. 16.
    Gran, I.R., Ertesvåg, I.S., Magnussen, B.F.: Influence of turbulence modeling on predictions of turbulent combustion. AIAA J. 35, 106–110 (1997)zbMATHCrossRefGoogle Scholar
  17. 17.
    Habibi, A., Merci, B., Roekaerts, D.: Turbulence radiation interaction in Reynolds-averaged Navier–Stokes simulations of nonpremixed piloted turbulent laboratory-scale flames. Combust. Flame 151(1–2), 303–320 (2007)CrossRefGoogle Scholar
  18. 18.
    Hairer, E., Wanner, G.: Solving ordinary differential equations II: stiff and differential-algebraic problems. In: Springer Series in Computational Mathematics, 2nd rev. edn. Springer, Berlin (1996)Google Scholar
  19. 19.
    Hairer, E., Wanner, G.: Radau5 (2002). URL, Last visited March 2011
  20. 20.
    Haworth, D.: Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci. 36(2), 168–259 (2010)CrossRefGoogle Scholar
  21. 21.
    Jones, W.P., Whitelaw, J.H.: Calculation methods for reacting turbulent flow: a review. Combust. Flame 48, 1–26 (1982)CrossRefGoogle Scholar
  22. 22.
    Kim, J.P., Schnell, U., Scheffknecht, G.: Comparison of different global reaction mechanisms for mild combustion of natural gas. Combust. Sci. Technol. 180(4), 565–592 (2008)CrossRefGoogle Scholar
  23. 23.
    Kronenburg, A., Kostka, M.: Modeling extinction and reignition in turbulent flames. Combust. Flame 143, 342–356 (2005)CrossRefGoogle Scholar
  24. 24.
    Launder, B.E., Spalding, D.B.: The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 3(2), 269–289 (1974)zbMATHCrossRefGoogle Scholar
  25. 25.
    Lilleberg, B., Ertesvåg, I.S., Rian, K.E.: Modeling instabilities in lean premixed turbulent combustors using detailed chemical kinetics. Combust. Sci. Technol. 181(9), 1107–1122 (2009)CrossRefGoogle Scholar
  26. 26.
    Magnussen, B.F.: On the structure of turbulence and a generalized Eddy Dissipation Concept for chemical reaction in turbulent flow. In: 19th AIAA Aerospace Science Meeting, 12–15 January, St. Louis, MO (1981)Google Scholar
  27. 27.
    Magnussen, B.F.: Modeling of NOx and soot formation by the Eddy Dissipation Concept. In: 1st topic Oriented Technical Meeting, 17–19 October, Int. Flame Research Foundation, Amsterdam, Holland (1989)Google Scholar
  28. 28.
    Magnussen, B.F., Hjertager, B.H.: On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Proc. Combust. Inst. 16, 719–729 (1976)Google Scholar
  29. 29.
    Magnussen, B.F., Lilleheie, N.I., Vembe, B.E., Lakså, B., Grimsmo, B., Lilleeng, L.A., Kleiveland, R., Rian, K.E., Olsen, R., Evanger, T.: Numerical computation of large scale fires and fire mitigation—from combustion science to industry application. In: Sixth International Seminar on Fire and Explosion Hazards, 11–16 April, Leeds, UK (2010)Google Scholar
  30. 30.
    Masri, A.R., Cao, R., Pope, S.B., Goldin, G.M.: PDF calculations of turbulent lifted flames of H2/N2 fuel issuing into a vitiated co-flow. Combust. Theory Model. 8(1), 1–22 (2004)CrossRefGoogle Scholar
  31. 31.
    Merci, B., Dick, E.: Influence of computational aspects on simulations of a turbulent jet diffusion flame. Int. J. Numer. Methods Heat Fluid Flow 13(7), 887–898 (2003)zbMATHCrossRefGoogle Scholar
  32. 32.
    Mustata, R., Valiño, L., Jiménez, C., Jones, W., Bondi, S.: A probability density function Eulerian Monte Carlo field method for large eddy simulations: application to a turbulent piloted methane/air diffusion flame (Sandia D). Combust. Flame 145(1–2), 88–104 (2006)CrossRefGoogle Scholar
  33. 33.
    Myhrvold, T., Ertesvåg, I.S., Gran, I.R., Cabra, R., Chen, J.Y.: A numerical investigation of a lifted H2/N2 turbulent jet flame in a vitiated coflow. Combust. Sci. Technol. 178(6), 1001–1030 (2006)CrossRefGoogle Scholar
  34. 34.
    OpenFOAM: OpenSource CFD Toolbox (2011). URL Last visited March 2011
  35. 35.
    Panjwani, B., Ertesvåg, I.S., Rian, K.E., Gruber, A.: Subgrid combustion modelling for large eddy simulation (LES) of turbulent combustion using Eddy Dissipation Concept (EDC). In: Fifth European Conference on Computational Fluid Dynamics (2010)Google Scholar
  36. 36.
    Rowinski, D.H., Pope, S.B.: PDF calculations of piloted premixed jet flames. Combust. Theory Model. 15(2), 245–266 (2011)zbMATHCrossRefGoogle Scholar
  37. 37.
    Schneider, C., Dreizler, A., Janicka, J., Hassel, E.P.: Flow field measurements of stable and locally extinguishing hydrocarbon-fueled jet flames. Combust. Flame 135, 185–190 (2003)CrossRefGoogle Scholar
  38. 38.
    Siegel, R., Howell, J.: Thermal Radiation Heat Transfer, 4th edn. Taylor & Francis, New York (2002)Google Scholar
  39. 39.
    Smith, T.F., Shen, Z.F., Friedman, J.N.: Evaluation of coefficients for the weighted sum of gray gases model. J. Heat Transf. Trans. ASME 104(4), 602–608 (1982)CrossRefGoogle Scholar
  40. 40.
    Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, J.W.C., Lissianski, V.V., Qin, Z.: GRI-Mech 3.0 (1999). URL Last visited March 2011
  41. 41.
    Wang, H., Pope, S.B.: Lagrangian investigation of local extinction, re-ignition and auto-ignition in turbulent flames. Combust. Theory Model. 12(5), 857–882 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Wang, H., Pope, S.B.: Time averaging strategies in the finite-volume/particle hybrid algorithm for the joint PDF equation of turbulent reactive flows. Combust. Theory Model. 12(3), 529–544 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Waterson, N.P., Deconinck, H.: Design principles for bounded higher-order convection schemes—a unified approach. J. Comput. Phys. 224, 182–207 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Zahirović, S., Scharler, R., Kilpinen, P., Obernberger, I.: Validation of flow simulation and gas combustion sub-models for the CFD-based prediction of NOx formation in biomass grate furnaces. Combust. Theory Model. 15(1), 61–87 (2011)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Bjørn Lilleberg
    • 1
  • Dominik Christ
    • 2
  • Ivar S. Ertesvåg
    • 1
  • Kjell Erik Rian
    • 3
  • Reinhold Kneer
    • 2
  1. 1.Department of Energy and Process EngineeringNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Institute of Heat and Mass Transfer (WSA)RWTH Aachen UniversityAachenGermany
  3. 3.Computational Industry Technologies AS (ComputIT)TrondheimNorway

Personalised recommendations