Skip to main content
Log in

A Compressible Pressure-based Solution Algorithm for Gas Turbine Combustion Chambers Using the PDF/FGM Model

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The investigation of the complex flow interactions occurring between combustion chamber outflow and turbine nozzle guiding vanes in gas turbines has been the subject of numerous studies in the last decade. In common modeling practice, combustion chamber and high-pressure turbine are considered independently from one another, however fundamental experimental evidence shows that outflow conditions sensibly affect swirling flows in simplified geometries. The objective of this study is to propose a novel methodology to pursue the integrated, contextual simulation of the combustor and the first nozzle guiding vane of a jet engine, which can be usefully and efficiently employed also within design procedures. The mathematical model and the solution method, based on the SIMPLE approach, are illustrated, with particular emphasis on the coupling strategy with the PDF/FGM combustion model, initially developed under the assumption of incompressible, low-speed flow. The method has been applied to investigate both academic and complex configurations of industrial interest with excellent results. The detailed description of the innovative investigation tool presented in this paper provides useful insight in physical and numerical issues of great practical relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An, B.-T., Liu, J.-J., Jiang, H.-D.: Combined unsteady effects of hot streak and trailing edge coolant ejection in a turbine stage. In: Proceedings of ASME TurboExpo 2009, Orlando, FL. ASME Paper GT2009-59473 (2009)

  2. An, B.-T., Liu, J.-J., Jiang, H.-D.: Numerical investigation on unsteady effects of hot streak on flow and heat transfer in a turbine stage. ASME J. Turbomach. 131, 031015-1-15 (2009)

    Article  Google Scholar 

  3. Barlow, R., Frank, J.: Piloted CH4/Air Flames C, D, E and F—Release 2.1. http://www.ca.sandia.gov/TNF (2007)

  4. Barringer, M.D., Thole, K.A., Polanka, M.D., Clark, J.P., Koch, P.J.: Migration of combustor exit profiles through high pressure turbine vanes. ASME J. Turbomach. 131, 021010-1-10 (2009)

    Article  Google Scholar 

  5. Bastiaans, R.J.M., Vreman, A.W., Pitsch, H.: DNS of Lean Hydrogen Combustion with Flamelet-generated Manifolds. Center for Turbulence Research, Annual Research Briefs, Stanford (2007)

  6. Bilger, R.W.: Turbulent diffusion flames. Prog. En. Comb. Sci. 1, 87–109 (1976)

    Article  Google Scholar 

  7. Bogar, T.J., Sajben, M., Kroutil, J.C.: Characteristic frequencies of transonic diffuser flow oscillations. AIAA 21(10), 1232–1240 (1983)

    Article  Google Scholar 

  8. Bray, K.N.C., Champion, M., Libby, P.A., Swaminathan, N.: Finite rate chemistry and presumed pdf models for premixed turbulent combustion. Combust. Flame 146(4), 665–673 (2006)

    Article  Google Scholar 

  9. Caretto, L., Gosman, A., Patankar, S., Spalding, D.: Two calculation procedures for steady, three-dimensional flows with recirculation. In: Cabannes, H., Temam, R. (eds.) Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics, vol. 19, pp. 60–68. Lecture Notes in Physics. Springer Berlin, Heidelberg (1973)

    Chapter  Google Scholar 

  10. CHEM1D: A One-dimensional Laminar Flame Code. Eindhoven University of Technology. http://www.tue.nl/combustion (2013)

  11. De Meester, R., Merci, B.: Hybrid RANS/PDF calculations of Sydney swirling flames. In: Proceedings of the 4th European Combustion Meeting (2009)

  12. Demirdzic, I., Lilek, Z., Peric, M.: A collocated finite volume method for predicting flows at all speeds. Int. J. Numer. Methods Fluids 16, 1029–1050 (1993)

    Article  MATH  Google Scholar 

  13. Di Mare, F., Jones, W.P., Menzies, K.R.: Large eddy simulation of a model gas turbine combustor. Combust. Flame 137(3), 278–294 (2004)

    Article  Google Scholar 

  14. Domingo, P., Vervisch, L., Payet, S., Hauguel, R.: DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated Chemistry. Combust. Flame 143(4), 566–586 (2005, Special issue to honor Professor Robert W. Bilger on the occasion of his seventieth birthday)

    Article  Google Scholar 

  15. Fiorina, B., Gicquel, O., Vervisch, L., Carpentier, S., Darabiha, N.: Premixed turbulent combustion modeling using tabulated detailed chemistry and pdf. Proc. Combust. Inst. 30(1), 867–874 (2005)

    Article  Google Scholar 

  16. Georgiadis, N.J., Drummond, J.E., Leonard, B.P.: Evaluation of turbulence models in the PARC code for transonic diffuser flows. Technical Report TM- 106391, NASA (1994)

  17. He, L., Menshikova, V., Haller, B.R.: Effect of hot-streak counts on turbine blade heat load and forcing. AIAA J. Propuls. Power 23, 1235–1241 (2007)

    Article  Google Scholar 

  18. ICAO Annex 16: International Standards and Recommended Practices, Environmental Protection, plus amendments. http://www.icao.int/publications (2004)

  19. Jones, W.P., Lindstedt, R.P.: Global reaction schemes for hydrocarbon combustion. Combust. Flame 173, 233–249 (1988)

    Article  Google Scholar 

  20. Ketelheun, A., Olbricht, C., Hahn, F., Janicka, J.: Premixed generated manifolds for the computation of technical combustion systems. In: Proceedings of the ASME Turbo Expo 2009, ASME Paper GT2009-59940

  21. Ketelheun, A., Olbricht, C., Hahn, F., Janicka, J.: NO prediction in turbulent flames using LES/FGM with additional transport equations. In: 33rd International Symposium on Combustion, Peking, China (2010)

  22. Klapdor, E.V.: Simulation of combustor-turbine interaction in a jet engine. Dissertation, TU Darmstadt, Institut für Energie- und Kraftwerkstechnik (2011)

  23. Klapdor, V., Pyliouras, S., Eggels, R.G.L.M., Janicka, J.: Towards simulation of combustor turbine interaction in an integrated simulation. In: Proceedings of ASME Turbo Expo, Glasgow, UK. ASME Paper GT 2010-22933 (2010)

  24. Kühne, J., Ketelheun, A., Janicka, J.: Analysis of sub-grid PDF of a progress variable approach using a hybrid LES/TPDF method. In: Proceedings of the Combustion Institute (2010)

  25. Martelli, F., Adami, P., Salvadori, S., Chana, K.S., Castillon, L.: Aero-thermal study of the unsteady flow field in a transonic gas turbine with inlet temperature distortions. In: Proceedings of ASME Turbo Expo, Berlin, Germany. ASME Paper GT2008-50628 (2008)

  26. NASA: NPARC Alliance Validation Archive. On the WWW. URL: http://www.grc.nasa.gov/WWW/wind/valid/transdif/transdif.html (2008)

  27. Nehse, M., Warnatz, J., Chevalier, C.: Kinetic modeling of the oxidation of large aliphatic hydrocarbons. In: Proceedings of Twenty-Sixth (International) Symposium on Combustion, pp. 773–780 (1996)

  28. Olbricht, C., Hahn, F., Ketelheun, A., Janicka, J.: Strategies for presumed PDF modeling for LES with premixed flamelet-generated manifolds. J. Turbul. 11(40), 1–18 (2010)

    Google Scholar 

  29. Peters, N.: Laminar flamelet concepts in turbulent combustion. Proc. Combust. Inst. 21, 1231–1250 (1988)

    Google Scholar 

  30. Peters, N.: Fifteen Lectures on Laminar and Turbulent Combustion. Ercoftac Summer School, Aachen, Germany (1992)

  31. Pope, S.B.: An explanation of the turbulent round-jet/plane-jet anomaly. AIAA J. 16(3), 279–280 (1978)

    Article  MathSciNet  Google Scholar 

  32. Pope, S.B.: A rational method of determininig probability distributions in turbulent reacting flows. J. Non-equilib. Thermodyn. 4, 309–320 (1979)

    Article  MATH  Google Scholar 

  33. Ramaekers, W.J.S.: The application of flamelet generated manifolds in modeling of turbulent partially-premixed flames. Master’s thesis, Eindhoven University of Technology (2002)

  34. Rizzi, A., Viviand, H.: Numerical Methods for the Computation of Inviscid Transonic Flows with Shock Waves. Notes on Numerical Fluid Mechanics, vol. 3. Vieweg, Braunschweig (1981)

    Book  Google Scholar 

  35. Rolls-Royce: The Jet Engine. Rolls-Royce plc, 5th edn. (1996, Reprinted)

  36. Rolls-Royce: Deutschland, University of Heidelberg, Project LES/PDF-ECT, project num. BE 95-1927

  37. Roux, S., Cazalens, M., Poinsot, T.: Outlet-boundary-condition influence for large eddy simulation of combustion instabilities in gas turbines. J. Propuls. Power 24(3), 541–546 (2008)

    Article  Google Scholar 

  38. Salehi, M.M., Bushe, W.K.: Presumed PDF modeling for RANS simulation of turbulent premixed flames. Combust. Theory Model. 14(3), 381–403 (2010)

    Article  MATH  Google Scholar 

  39. Salmon, J.T., Bogar, T.J., Sajben, M.: Laser Doppler velocimeter measurements in unsteady, separated, transonic diffuser flows. AIAA 21(12), 1690–1697 (1983)

    Article  Google Scholar 

  40. Sarkar, S., Balakrishnan, L.: Application of a Reynolds-Stress turbulence model to the compressible shear layer. Technical Report NASA CR 182002, ICASE Report 90–18 (1990)

  41. Schlüter, J.U., Wu, X., v. d. Weide, E., Hahn, S., Alonso, J.J., Pitsch, H.: Multi-code simulations: a generalized coupling approach. In: 17th AIAA Computational Fluid Dynamics Conference. AIAA-2005-4997 (2005)

  42. Shih, T.H., Liou, W.W., Shabbir, A., Yang, Z., Zhu, J.: A new k-_ Eddy-Viscosity model for high Reynolds number turbulent flows. Comput. Fluids 24(3), 227–238 (1995)

    Article  MATH  Google Scholar 

  43. Turell, M.D., Stopford, P.J., Syed, K.J., Buchanan, E.: Cfd simulation of the flow within and downstream of a high-swirl lean premixed gas turbine combustor. In: Proceedings of Turbo Expo, Vienna, Australia. ASME Paper GT 2004-53112 (2004)

  44. van Oijen, J.A.: Flamelet-generated manifolds: development and application to premixed laminar flames. PhD Thesis, Technical University Eindhoven (2002)

  45. van Oijen, J.A., de Goey, L.P.H.: Modeling of premixed laminar flames using flamelet-generated manifolds. Combust. Sci. Technol. 161, 113–137 (2000)

    Article  Google Scholar 

  46. Vreman, A.W., Albrecht, B.A., van Oijen, J.A., de Goey, L.P.H., Bastiaans, R.J.M.: Premixed and non-premixed generated manifolds in large-eddy simulation of Sandia flame D and F. Combust. Flame 153, 394–416 (2008)

    Article  Google Scholar 

  47. Westbrook, C., Dryer, H.: Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combust. Sci. Technol. 2, 31–47 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. di Mare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klapdor, E.V., di Mare, F., Kollmann, W. et al. A Compressible Pressure-based Solution Algorithm for Gas Turbine Combustion Chambers Using the PDF/FGM Model. Flow Turbulence Combust 91, 209–247 (2013). https://doi.org/10.1007/s10494-013-9451-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-013-9451-2

Keywords

Navigation