Skip to main content
Log in

Large Eddy Simulation of a Polydisperse Ethanol Spray Flame

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Ethanol is identified as an interesting alternative fuel. In this regards, the predictive capability of combustion Large Eddy Simulation approach coupled to Lagrangian droplet dynamic model to retrieve the turbulent droplet dispersion, droplet size distribution, spray evolution and combustion properties is investigated in this paper for an ethanol spray flame. Following the Eulerian-Lagrangian approach with a fully two way coupling, the Favre-filtered low Mach number Navier-Stokes equations are solved on structured grids with dynamic sub-grid scale models to describe the turbulent carrier gas phase. Droplets are injected in polydisperse manner and generated in time dependent boundary conditions. They evaporate to form an air-fuel mixture that yields spray flame. Part of the ethanol droplets evaporates within the prevaporization area before reaching the combustion zone, making the flame to burn in a partially premixed regime. The chemistry is described by a tabulated detailed chemistry based on the flamelet generated manifold approach. The fuel, ethanol, is modeled by a detailed reaction mechanism consisting of 56 species and 351 reversible reactions. The simulation results including excess gas temperature, droplet velocities and corresponding fluctuations, droplet mean diameters and spray volume flux at different distances from the exit plane show good agreement with experimental data. Analysis of combustion spray features allows gaining a deep insight into the two-phase flow process ongoing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramzon, B., Sirignano, W.A.: Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Transfer 32, 1605–1618 (1989)

    Article  Google Scholar 

  2. Faeth, G.M.: Proc. Spray combustion phenomena. Proc. Combust. Inst. 26, 1593–1612 (1996)

    Google Scholar 

  3. Jiang, X., Siamas, G.A., Jagus, K., Karayiannis, T.G.: Physical modelling and advanced simulations of gas–liquid two-phase jet flows in atomization and sprays. Prog. Energy Comb. Sci. 36, 131–167 (2010)

    Article  Google Scholar 

  4. Chigier, N.A., Reitz, R.: AIAA Prog. In: Kuo, K.K. (ed.) Astronautics and Aeronautics, pp. 109–136 (1995)

  5. Gutheil, E.: Modeling and Simulation of Droplet and Spray Combustion, Handbook of combustion. Wiley-VCH Verlag GmbH & Co, KGaA (2010)

  6. Lederlin, T., Pitsch, H.: Center for Turbulence Research Annual Research Briefs, pp. 479–490 (2008)

  7. Senoner, J.M., Sanjosé, M., Lederlin, T., Jaegle, F., García, M., Riber, E., Cuenot, B., Gicquel, L., Pitsch, H., Poinsot, T.: Eulerian and Lagrangian large-eddy simulations of an evaporating two-phase flow. C. R. Méc. 337(6–7), 458–468 (2009)

    Article  MATH  Google Scholar 

  8. Sanjosé, M., Lederlin, T., Gicquel, L., Cuenot, B., Pitsch, H., García-Rosa, N., Lecourt, R., Poinsot, T.: Center for Turbulence Research Proceedings of the Summer Program (2008)

  9. Jaegle, F., Senoner, J.-M., García, M., Bismes, F., Lecourt, R., Cuenot, B., Poinsot, T.: Eulerian and Lagrangian spray simulations of an aeronautical multipoint injector. Proc. Comb. Institute 33(2), 2099–2107 (2011)

    Article  Google Scholar 

  10. Peters N.: Fifteen Lectures on Laminar and Turbulent Combustion. Technical report, ERCOFTAC Summer School, RWTH Aachen (1992)

  11. Fiorina, B., Gicquel, O., Vervisch, L., Carpentier, S., Darabiha, N.: Premixed turbulent combustion modeling using tabulated detailed chemistry and PDF. Proc. Comb. Inst. 30, 867–874 (2005)

    Article  Google Scholar 

  12. Bastiaans, R.J.M., van Oijen, J.A., de Goey, L.P.H.: Application of flamelet generated manifolds and flamelet analysis of turbulent combustion. Int. J. Multiscale Comp. Eng. 4(3), 307–317 (2006)

    Article  Google Scholar 

  13. Vreman, A.W., Albrecht, B.A., van Oijen, J.A., de Goey, L.P.H., Bastiaans R.J.M.: Premixed and non-premixed generated manifolds in large-eddy simulation of Sandia flame D and F. Combust. Flame 153(3), 394–416 (2008)

    Article  Google Scholar 

  14. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 3rd edn. (2011)

  15. Janicka, J. Sadiki, A.: Large-eddy simulation of turbulent combustion systems. Proc. Comb. Institute 30(1), 537–547 (2005)

    Article  Google Scholar 

  16. Pitsch, H.: Large-eddy simulation of turbulent combustion. Ann. Rev. Fluid Mech. 38, 453–482 (2006)

    Article  MathSciNet  Google Scholar 

  17. Pierce, C., Moin, P.: Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Patel, N., Menon, S.: Simulation of spray-turbulence-flame interactions in a lean direct injection combustor. Combust. Flame 153(1–2), 228–257 (2008)

    Article  Google Scholar 

  19. Miller, R.S., Bellan, J.: Direct numerical simulation and subgrid analysis of a transitional droplet laden mixing layer. Phys. Fluids 12, 650 (2000)

    Article  MATH  Google Scholar 

  20. Sazhin, S.: Advanced models of fuel droplet heating and evaporation. Prog. Energy Combust. Sci. 32, 162–214 (2006)

    Article  Google Scholar 

  21. Meftah, H., Reveillon, J., Mir, A., Demoulin, F.X.: SGS analysis of the evolution equations of the mixture fraction and the progress variable variances in the presence of spray combustion. Int. J. Spray Comb. Dynamics 2(1), 21–48 (2010)

    Article  Google Scholar 

  22. Jones, W.P., Lyra, S., Navarro-Martinez, S.: Numerical investigation of swirling kerosene spray flames using large-eddy simulation. Combust. Flame 159(4), 1539–1561 (2012)

    Article  Google Scholar 

  23. De, S., Lakshmisha, K.N., Bilger, R.W.: Modeling of nonreacting and reacting turbulent spray jets using a fully stochastic separated flow approach. Combust. Flame 158(10), 1992–2008 (2011)

    Article  Google Scholar 

  24. Masri, A.R., Gounder, J.D.: Turbulent spray flames of acetone and ethanol approaching extinction. Combust. Sci. Technol. 182(4–6), 702–715 (2010)

    Article  Google Scholar 

  25. Stårner, S.H., Gounder, J., Masri, A.R.: Effects of turbulence and carrier fluid on simple, turbulent spray jet flames. Combust. Flame 143, 420–432 (2005)

    Article  Google Scholar 

  26. Mortensen, M., Bilger, R.W.: Derivation of the conditional moment closure equations for spray combustion. Combust. Flame 156(1), 62–72 (2009)

    Article  Google Scholar 

  27. de Chaisemartin, S., Fréret, L., Kah, D., Laurent, F., Fox, R.O., Reveillon, J., Massot, M.: Eulerian models for turbulent spray combustion with polydispersity and droplet crossing. C. R. Méc. 337, 438–448 (2009)

    Article  MATH  Google Scholar 

  28. Ismail, H.M., Kiat Ng, H., Gan, S.: Evaluation of non-premixed combustion and fuel spray models for in-cylinder diesel engine simulation. Appl. Energy 90, 271–279 (2012)

    Article  Google Scholar 

  29. Luo, K., Pitsch, H., Pai, M.G., Desjardins, O.: Direct numerical simulations and analysis of three-dimensional n-heptane spray flames in a model swirl combustor. Proc. Combust. Inst. 33, 2143–2152 (2011)

    Article  Google Scholar 

  30. Sadiki, A., Chrigui, M., Janicka, J., Maneshkarimi, M.R.: Modeling and simulation of effects of turbulence on vaporization, mixing and combustion of liquid-fuel sprays. J. Flow Turb. Comb. 74, 145–167 (2005)

    Article  Google Scholar 

  31. Apte, S.V., Mahesh, K., Moin, P.: Large-eddy simulation of evaporating spray in a coaxial combustor. Proc. Combust. Inst. 32(2), 2247–2256 (2009)

    Article  Google Scholar 

  32. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3, 1760–1765 (1991)

    Article  MATH  Google Scholar 

  33. Sagaut, P.: Large Eddy Simulation for Incompressible Flows. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  34. Wegner, B., Maltsev, A., Schneider, C., Sadiki, A., Dreizler, A., Janicka, J.: Assessment of unsteady RANS in predicting swirl flow instability based on LES and experiments. Int. J. Heat Fluid Flow 25, 528–536 (2004)

    Article  Google Scholar 

  35. Apte, S.V., Mahesh, K., Lundgren, T.: Accounting for finite-size effects in simulations of disperse particle-laden flows. Int. J. Multiph. Flow 34(3), 260–271 (2008)

    Article  Google Scholar 

  36. Sommerfeld, M.: Modellierung und numerische Berechnung von partiklebeladenen turbulenten Strömungen mit Hilfe des Euler/Lagrange-Verfahrens. Shaker Verlag Aachen. ISBN 3-8265-1951-5 (1996)

  37. Sirignano, W.A.: Spray combustion review. J. Fluids Eng. 115, 345–378 (1993)

    Article  Google Scholar 

  38. VDI-Wärmeatlas. doi:10.1007/978-3-540-32218-4 (2006)

  39. Chrigui, M.: Computational. Therm. Sci. 2(1), 55–78 (2010)

    Google Scholar 

  40. Chrigui, M., Roisman, I., Batarseh, F.Z., Sadiki, A., Tropea, C.: Spray generated by an airblast atomizer under elevated ambient pressure. J. Propuls. Power 26(6), 1170–1183 (2010)

    Article  Google Scholar 

  41. Landenfeld, T., Sadiki, A., Janicka, J.: A turbulence – chemistry interaction model based on multivariate presumed beta-PDF method for turbulent flames. Flow Turbul. Combust. 68, 111–135 (2002)

    Article  MATH  Google Scholar 

  42. Marinov, N.M.: A detailed chemical kinetic model for high temperature ethanol oxidation. Int. J. Chem. Kinet. 31, 183–220 (1999)

    Article  Google Scholar 

  43. Lehnhäuser, T., Schäfer, M.: Improved linear interpolation practice for finite volume schemes on complex grids. Int. J. Numer. Methods Fluids 38(7), 625–645 (2002)

    Article  MATH  Google Scholar 

  44. Chrigui, M., Gounder, J., Sadiki, A., Masi, A.R., Janicka, J.: Partially premixed reacting acetone spray using LES and FGM tabulated chemistry. Combust. Flame 159(8), 2718–2741 (2012). Special Issue

    Article  Google Scholar 

  45. Carbonell, D., Perez-Segarra, C.D., Coelho, P.J., Oliva, A.: Flamelet mathematical models for non-premixed laminar combustion. Combust. Flame 156(2), 334–347 (2009)

    Article  Google Scholar 

  46. Marracino, B., Lentini, D.: Radiation modelling in non luminous nonpremixed turbulent flames. Combust. Sci. Technol. 128, 23–48 (1997)

    Article  Google Scholar 

  47. Ukai, S., Kronenburg, A., Stein, O.T.: LES-CMC of a dilute acetone spray flame. In: Proceedings of the Combustion Institute, vol. 34, Issue 1, pp. 1643–1650 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Chrigui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chrigui, M., Masri, A.R., Sadiki, A. et al. Large Eddy Simulation of a Polydisperse Ethanol Spray Flame. Flow Turbulence Combust 90, 813–832 (2013). https://doi.org/10.1007/s10494-013-9449-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-013-9449-9

Keywords

Navigation