Flow, Turbulence and Combustion

, Volume 90, Issue 1, pp 69–94 | Cite as

Development of a Low-Reynolds-number k-ω Model for FENE-P Fluids

  • P. R. Resende
  • F. T. Pinho
  • B. A. Younis
  • K. Kim
  • R. Sureshkumar


A low-Reynolds-number k-ω model for Newtonian fluids has been developed to predict drag reduction of viscoelastic fluids described by the FENE-P model. The model is an extension to viscoelastic fluids of the model for Newtonian fluids developed by Bredberg et al. (Int J Heat Fluid Flow 23:731–743, 2002). The performance of the model was assessed using results from direct numerical simulations for fully developed turbulent channel flow of FENE-P fluids. It should only be used for drag reductions of up to 50 % (low and intermediate drag reductions), because of the limiting assumption of turbulence isotropy leading to an under-prediction of k, but compares favourably with results from k-ε models in the literature based on turbulence isotropy.


Drag reduction Polymer solutions FENE-P k-ω turbulence model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sureshkumar, R., Beris, A.N., Handler, R.A.: Direct numerical simulation of the turbulent channel flow of a polymer solution. Phys. Fluids 9(3), 743–755 (1997)CrossRefGoogle Scholar
  2. 2.
    Angelis, E.D., Casciola, C.M., Piva, R.: DNS of wall turbulence: dilute polymers and self-sustaining mechanisms. Comput. Fluids 31, 495–507 (1999)CrossRefGoogle Scholar
  3. 3.
    Li, C.F., Sureshkmar, R., Khomami, B.: Influence of rheological parameters on polymer induced turbulent drag reduction. J. Non-Newton. Fluid Mech. 140, 23–40 (2006)MATHCrossRefGoogle Scholar
  4. 4.
    Housiadas, K.D., Beris, A.N.: An efficient fully implicit spectral scheme for DNS of turbulent viscoelastic channel flow. J. Non-Newton. Fluid Mech. 122, 243–262 (2004)MATHCrossRefGoogle Scholar
  5. 5.
    Dimitropoulos, C.D., Sureshkumar, R., Beris, A.N.: Direct numeric simulation of viscoelastic turbulent channel flow exhibiting drag reduction: effect of variation of rheological parameters. J. Non-Newton. Fluid Mech. 79, 433–468 (1998)MATHCrossRefGoogle Scholar
  6. 6.
    Yu, B., Kawaguchi, Y.: Effect of Weissenberg number on the flow structure: DNS study of drag reducing flow with surfactant additives. Int. J. Heat Fluid Flow 24, 491–499 (2003)CrossRefGoogle Scholar
  7. 7.
    Yu, B., Kawaguchi, Y.: Parametric study of surfactant-induced drag-reduction by DNS. Int. J. Heat Fluid Flow 27, 887–894 (2006)CrossRefGoogle Scholar
  8. 8.
    Dimitropoulos, C.D., Sureshkumar, R., Beris, A.N., Handler, R.A.: Budgets of Reynolds stress, kinetic energy and streamwise entrophy in viscoelastic turbulent channel flow. Phys. Fluids 13(4), 1016–1027 (2001)CrossRefGoogle Scholar
  9. 9.
    Li, C.F., Gupta, V.K., Sureshkmar, R., Khomami, B.: Turbulent channel flow of dilute polymeric solutions: drag reduction scaling and an eddy viscosity model. J. Non-Newton. Fluid Mech. 139, 177–189 (2006)MATHCrossRefGoogle Scholar
  10. 10.
    Housiadas, K.D., Beris, A.N., Handler, R.A.: Viscoelastic effects on higher order statistics and coherent structures in turbulent channel flow. Phys. Fluids 17(35106) (2005)Google Scholar
  11. 11.
    Kim, K., Li, C.F., Sureshkumar, R., Balachandar, S., Adrian, R.: Effects of polymer stresses on eddy structures in drag-reduced turbulent channel flow. J. Fluid Mech. 584, 281–299 (2007)MATHCrossRefGoogle Scholar
  12. 12.
    Pinho, F.T., Li, C.F., Younis, B.A., Sureshkumar, R.: A low Reynolds number k-ε turbulence model for FENE-P viscoelastic fluids. J. Non-Newton. Fluid Mech. 154, 89–108 (2008)CrossRefGoogle Scholar
  13. 13.
    Malin, M.R.: Turbulent pipe flow of power-law fluids. Int. Commun. Heat Mass Transfer 24(7), 977–988 (1997)CrossRefGoogle Scholar
  14. 14.
    Pinho, F.T.: A GNF framework for turbulent flow models of drag reducing fluids and proposal for a k-ε type closure. J. Non-Newton. Fluid Mech. 114, 149–184 (2003)MATHCrossRefGoogle Scholar
  15. 15.
    Cruz, D.O.A., Pinho, F.T.: Turbulent pipe flow predictions with a low Reynolds number k-ε model for drag reducing fluids. J. Non-Newton. Fluid Mech. 114, 109–148 (2003)MATHCrossRefGoogle Scholar
  16. 16.
    Cruz, D.O.A., Pinho, F.T., Resende, P.R.: Modeling the new stress for improved drag reduction predictions of viscoelastic pipe flow. J. Non-Newton. Fluid Mech. 121, 127–141 (2004)MATHCrossRefGoogle Scholar
  17. 17.
    Resende, P.R., Escudier, M.P., Presti, F., Pinho, F.T., Cruz, D.O.A.: Numerical predictions and measurements of Reynolds normal stresses in turbulent pipe flow of polymers. Int. J. Heat Fluid Flow 27, 204–219 (2006)CrossRefGoogle Scholar
  18. 18.
    Ptasinski, P.K., Boersma, B.J., Nieuwstadt, F.T.M., Hulsen, M.A., Brule, B.H.A.A.V.D., Hunt, J.C.R.: Turbulent channel flow near maximum drag reduction: simulation, experiments and mechanisms. J. Fluid Mech. 490, 251–291 (2003)MATHCrossRefGoogle Scholar
  19. 19.
    Nagano, Y., Hishida, M.: Improved form of the k-ε model for wall turbulent shear flows. J. Fluids Eng. 109, 156–160 (1987)CrossRefGoogle Scholar
  20. 20.
    Nagano, Y., Shimada, M.: Modeling the dissipation-rate equation for two-equation turbulence model. In: Ninth symposium on “Turbulent shear flows”, Kyoto, Japan, 16–18 August (1993)Google Scholar
  21. 21.
    Resende, P.R., Kim, K., Younis, B.A., Sureshkumar, R., Pinho, F.T.: A k-ε turbulence model for FENE-P fluid flows at low and intermediate regimes of polymer-induced drag reduction. J. Non-Newton. Fluid Mech. 166, 639–660 (2011)CrossRefGoogle Scholar
  22. 22.
    Iaccarino, G., Shaqfeh, E.S.G., Dubief, Y.: Reynolds-averaged modeling of polymer drag reduction in turbulent flows. J. Non-Newton. Fluid Mech. 165, 376–384 (2010)CrossRefGoogle Scholar
  23. 23.
    Durbin, P.A.: Separated flow computations with the k-ε-v2 model. AIAA J. 33, 659–664 (1995)CrossRefGoogle Scholar
  24. 24.
    Wilcox, D.C.: Turbulence modeling for CFD, 1st edn. DCW Industries Inc., La Cañada, California (1993)Google Scholar
  25. 25.
    Wilcox, D.: Reassessment of the scale-determining equation for advanced turbulence models. AIAA J. 26, 1299–1310 (1988)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Menter, F.R.: Influence of freestream values on k-ε turbulence model predictions. AIAA J. 30(6), 1657–1659 (1991)CrossRefGoogle Scholar
  27. 27.
    Speziale, C.G., Abid, R., Anderson, E.C.: Critical evaluation of two-Equation models for near-Wall turbulence. AIAA J. 30(2), 324–331 (1992)MATHCrossRefGoogle Scholar
  28. 28.
    Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1604 (1994)CrossRefGoogle Scholar
  29. 29.
    Peng, S.-H., Davidson, L., Holmberg, S.: A modified low-Reynolds-number k-ω model for recirculating flows. J. Fluids Eng. 119, 867–875 (1997)CrossRefGoogle Scholar
  30. 30.
    Bredberg, J., Peng, S.H., Davidson, L.: An improved k-ω turbulence model applied to recirculating flows. Int. J. Heat Fluid Flow 23, 731–743 (2002)CrossRefGoogle Scholar
  31. 31.
    Abe, K., Kondoh, T., Nagano, Y.: A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows—I. Flow field calculations. Int. J. Heat Mass Transfer 37, 139–151 (1994)MATHCrossRefGoogle Scholar
  32. 32.
    Wilcox, D.: Comparison of two-equation turbulence models for boundary ayers with pressure gradient. AIAA J. 31, 1414–1421 (1993)MATHCrossRefGoogle Scholar
  33. 33.
    Lien, F., Kalitzin, G.: Computations of transonic flow with the v2-f turbulence model. Int. J. Heat Fluid Flow 22, 53–61 (2001)CrossRefGoogle Scholar
  34. 34.
    Bird, R.B., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Liquids, vol. 1: Fluids Mechanics, 2nd edn. Wiley, New York (1987)Google Scholar
  35. 35.
    Bird, R.B., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Liquids, vol. 2: Kinetic Theory, 2nd edn. Wiley, New York (1987)Google Scholar
  36. 36.
    Resende, P.R.: Turbulence models for viscoelastic fluids. PhD thesis, University of Porto (2010)Google Scholar
  37. 37.
    Housiadas, K.D., Beris, A.N.: Polymer-induced drag reduction: Effects of the variations in elasticity and inertia in turbulent viscoelastic channel flow. Phys. Fluids 15(8), 2369–2384 (2003)CrossRefGoogle Scholar
  38. 38.
    Younis, B.A.: EXPRESS: A Computer Programme for Two-Dimensional Turbulent Boundary Layer Flow. Departament of Civil Engineering, City University, London, UK (1987)Google Scholar
  39. 39.
    Resende, P.R., Pinho, F.T., Cruz, D.O.A.: A Reynolds stress model for turbulent pipe flow of viscoelastic fluids. Paper presented at the Proceedings of the First National Conference on Numerical Methods for Fluid Mechanics and Thermodynamics, Costa da Caparica, Lisboa, Portugal, 8–9 June 2006Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • P. R. Resende
    • 1
  • F. T. Pinho
    • 1
  • B. A. Younis
    • 2
  • K. Kim
    • 3
  • R. Sureshkumar
    • 4
  1. 1.Centro de Estudos de Fenómenos de TransporteDepartamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do PortoPortoPortugal
  2. 2.Department of Civil and Environmental EngineeringUniversity of CaliforniaDavisUSA
  3. 3.Department of Mechanical EngineeringHanbat National UniversityYuseong-guSouth Korea
  4. 4.Department of Biomedical and Chemical EngineeringSyracuse UniversitySyracuseUSA

Personalised recommendations