Flow, Turbulence and Combustion

, Volume 90, Issue 4, pp 859–884 | Cite as

Towards Comprehensive Coal Combustion Modelling for LES

  • O. T. SteinEmail author
  • G. Olenik
  • A. Kronenburg
  • F. Cavallo Marincola
  • B. M. FranchettiEmail author
  • A. M. Kempf
  • M. Ghiani
  • M. VascellariEmail author
  • C. Hasse


Large eddy simulations of pulverised coal combustion (PCC-LES) stabilised on a laboratory-scale piloted jet burner are carried out. The joint simulation effort of three research groups at Freiberg University (FG), Imperial College (IC) and Stuttgart University (ST) is presented, and the details of the comprehensive coal combustion models and their numerical implementation in three different computer programs are discussed. The (standard) coal sub-models and parameters used by the different groups are unified wherever possible. Differences amongst the groups are a different code basis and an Eulerian treatment of the coal particles by IC, while FG and ST use the Lagrangian framework for particle transport. The flow modelling is first validated for the corresponding non-reacting case and all LES calculations accurately capture the experimental trends. Velocity field statistics for the PCC case are in good accordance with the experimental evidence, but scalar statistics illustrate the complexity of coal combustion modelling. The results show notable differences amongst the groups that cannot only be attributed to the different treatment of the particle phase, and they highlight the difficulty to assess and interpret the quality of specific modelling approaches, and a need for further work by the research community. The present study is the first to compare three originally independent transient coal simulations and a step towards comprehensive PCC-LES.


Pulverised coal combustion LES Piloted jet flame 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alden, M., Bood, J., Li, Z., Richter, M.: Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques. Proc. Combust. Inst. 33(1), 69–97 (2011)CrossRefGoogle Scholar
  2. 2.
    Backreedy, R., Habib, R., Jones, J.M., Pourkashanian, M., Williams, A.: An extended coal combustion model. Fuel 78(14), 1745–1754 (1999)CrossRefGoogle Scholar
  3. 3.
    Badzioch, S., Hawksley, P.G.: Kinetics of thermal decomposition of pulverised coal particles. Ind. Eng. Chem. Process Des. Develop. 9(4), 521–530 (1970)CrossRefGoogle Scholar
  4. 4.
    Baum, M., Street, P.: Predicting the combustion behaviour of coal particles. Combust. Sci. Techn. 3, 231–243 (1971)CrossRefGoogle Scholar
  5. 5.
    Bermudez, A., Ferrin, J., Linan, A., Saavedra, L.: Numerical simulation of group combustion of pulverized coal. Combust. Flame 158(9), 1852–1865 (2011)CrossRefGoogle Scholar
  6. 6.
    Böhm, B., Stein, O., Kempf, A., Dreizler, A.: In-nozzle measurements of a turbulent opposed jet using PIV. Flow Turbul. Combust. 85, 73–93 (2010)zbMATHCrossRefGoogle Scholar
  7. 7.
    Chandrasekhar, S.: Radiative Transfer. Dover, New York (1960)Google Scholar
  8. 8.
    Chen, L., Yong, S.Z., Ghoniem, A.F.: Oxy-fuel combustion of pulverized coal: characterization, fundamentals, stabilization and CFD modeling. Prog. Energ. Combust. Sci. 38(2), 156–214 (2012)CrossRefGoogle Scholar
  9. 9.
    Cheng, P.: Two-dimensional radiating gas flow by a moment method. AIAA J. 2(9), 1662–1664 (1964)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Crowe, C., Sharma, M., Stock, D.: The particle source in cell (PSI-cell) model for gas-droplet flows. J. Fluids. Eng. 6, 325–332 (1977)CrossRefGoogle Scholar
  11. 11.
    Eaton, A., Smoot, L., Hill, S., Eatough, C.: Components, formulations, solutions, evaluation, and application of comprehensive combustion models. Prog. Energy Combust. Sci. 25(4), 387–436 (1999)CrossRefGoogle Scholar
  12. 12.
    Edge, P., Gubba, S., Ma, L., Porter, R., Pourkashanian, M., Williams, A.: LES modelling of air and oxy-fuel pulverised coal combustion - impact on flame properties. Proc. Combust. Inst. 33, 2709–2716 (2011)CrossRefGoogle Scholar
  13. 13.
    Fletcher, T.H., Kerstein, A.R., Pugmire, R.J., Grant, D.M.: Chemical percolation model for devolatilization. 2. Temperature and heating rate effects on product yields. Energy & Fuels 4(1), 54–60 (1990)CrossRefGoogle Scholar
  14. 14.
    Fletcher, T.H., Kerstein, A.R., Pugmire, R.J., Solum, M.S., Grant, D.M.: Chemical percolation model for devolatilization. 3. Direct use of 13C NMR data to predict effects of coal type. Energy & Fuels 6(4), 414–431 (1992)CrossRefGoogle Scholar
  15. 15.
    Floyd, J., Kempf, A.M., Kronenburg, A., Ram, R.H.: A simple model for the filtered density function for passive scalar combustion LES. Combust. Theory Mod. 13(4), 559–588 (2009)zbMATHCrossRefGoogle Scholar
  16. 16.
    Franchetti, B., Cavallo-Marincola, F., Navarro-Martinez, S., Kempf, A.: Large eddy simulation of a pulverised coal jet flame. Proc. Combust. Inst. (2012). doi: 10.1016/j.proci.2012.07.056 zbMATHGoogle Scholar
  17. 17.
    Genetti, D., Fletcher, T., Pugmire, R.: Development and application of a correlation of 13C NMR chemical structural analyses of coal based on elemental composition and volatile matter content. Energy and Fuels 13(1), 60–68 (1999)CrossRefGoogle Scholar
  18. 18.
    Grant, D., Pugmire, R., Fletcher, T., Kerstein, A.: Chemical model of coal devolatilization using percolation lattice statistics. Energy & Fuels 3(2), 175–186 (1989)CrossRefGoogle Scholar
  19. 19.
    Hashimoto, N., Kurose, R., Hwang, S.M., Tsuji, H., Shirai, H.: A numerical simulation of pulverized coal combustion employing a tabulated-devolatilization-process model (TDP model). Combust. Flame 159(1), 353–366 (2012)CrossRefGoogle Scholar
  20. 20.
    Hashimoto, N., Kurose, R., Shirai, H.: Numerical simulation of pulverized coal jet flame employing the TDP model. Fuel 97, 277–287 (2012)CrossRefGoogle Scholar
  21. 21.
    Heil, P., Toporov, D., Stadler, H., Tschunko, S., Förster, M., Kneer, R.: Development of an oxycoal swirl burner operating at low O 2 concentrations. Fuel 88(7), 1269–1274 (2009)CrossRefGoogle Scholar
  22. 22.
    Hu, L.Y., Zhou, L.X., Zhang, J.: Large-eddy simulation of a swirling diffusion flame using a SOM SGS combustion model. Numer. Heat Transf. B 50(1), 41–58 (2006)CrossRefGoogle Scholar
  23. 23.
    Hwang, S.M., Kurose, R., Akamatsu, F., Tsuji, H., Makino, H., Katsuki, M.: Application of optical diagnostics techniques to a laboratory-scale turbulent pulverized coal flame. Energy and Fuels 19, 382–392 (2005)CrossRefGoogle Scholar
  24. 24.
    Hwang, S.M., Kurose, R., Akamatsu, F., Tsuji, H., Makino, H., Katsuki, M.: Observation of detailed structure of turbulent pulverized-coal flame by optical measurement. Part 1. Time-averaged measurement of behavior of pulverized-coal particles and flame structure. JSME Int. J. 49, 1316–1327 (2006)CrossRefGoogle Scholar
  25. 25.
    Hwang, S.M., Kurose, R., Akamatsu, F., Tsuji, H., Makino, H., Katsuki, M.: Observation of detailed structure of turbulent pulverized-coal flame by optical measurement. Part 2. Instantaneous two-dimensional measurement of combustion reaction zone and pulverized-coal particles. JSME Int. J. 49, 1328–1335 (2006)CrossRefGoogle Scholar
  26. 26.
    Kempf, A., Klein, M., Janicka, J.: Efficient generation of initial- and inflow-conditions for transient turbulent flows in arbitrary geometries. Flow Turbul. Combust. 74, 67–84 (2005)zbMATHCrossRefGoogle Scholar
  27. 27.
    Kempf, A., Wysocki, S., Pettit, M.: An efficient, parallel low-storage implementation of Klein’s turbulence generator for LES and DNS. Comput. Fluids 60, 58–60 (2012)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186(2), 652–665 (2003)zbMATHCrossRefGoogle Scholar
  29. 29.
    Kobayashi, H., Howard, J.B., Sarofim, A.F.: Coal devolatilization at high temperatures. Proc. Combust. Inst. 16, 411–425 (1977)Google Scholar
  30. 30.
    Kurose, R., Makino, H.: Large eddy simulation of a solid-fuel jet flame. Combust. Flame 135, 1–16 (2003)CrossRefGoogle Scholar
  31. 31.
    Kurose, R., Watanabe, H., Makino, H.: Numerical simulations of pulverized coal combustion. KONA Powder and Particle Journal 27, 144–156 (2009)Google Scholar
  32. 32.
    Kutne, P., Kapadia, B.K., Meier, W., Aigner, M.: Experimental analysis of the combustion behaviour of oxyfuel flames in a gas turbine model combustor. Proc. Combust. Inst. 33(2), 3383–3390 (2011)CrossRefGoogle Scholar
  33. 33.
    Lockwood, F.C., Salooja, A.P., Syed, S.A.: A prediction method for coal-fired furnaces. Combust. Flame 38, 1–15 (1980)CrossRefGoogle Scholar
  34. 34.
    Loth, E.: Numerical approaches for motion of dispersed particles, droplets and bubbles. Prog. Energ. Combust. Sci. 26, 161–223 (2000)CrossRefGoogle Scholar
  35. 35.
    Magnussen, B., Hjertager, B.: On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Proc. Combust. Inst. 16(1), 719–729 (1977)Google Scholar
  36. 36.
    Masri, A.R., Kalt, P.A.M., Barlow, R.S.: The compositional structure of swirl stabilised turbulent non-premixed flames. Combust. Flame 137, 1–37 (2004)CrossRefGoogle Scholar
  37. 37.
    Morsi, S., Alexander, A.: An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech. 55(2), 193–208 (1972)zbMATHCrossRefGoogle Scholar
  38. 38.
    Olbricht, C., Stein, O.T., Janicka, J., van Oijen, J.A., Wysocki, S., Kempf, A.M.: LES of lifted flames in a gas turbine model combustor using top-hat filtered PFGM chemistry. Fuel 96, 100–107 (2012)CrossRefGoogle Scholar
  39. 39.
    Orsino, S., Tamura, M., Stabat, P., Constantini, S., Prado, O., Weber, R.: Excess enthalpy combustion of coal. Tech. Rep. F46/y/3, IFRF (2000)Google Scholar
  40. 40.
    Patankar, S., Spalding, D.: A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transfer 15(10), 1787–1806 (1972)zbMATHCrossRefGoogle Scholar
  41. 41.
    Pettit, M., Coriton, B., Gomez, A., Kempf, A.: Large-eddy simulation and experiments on non-premixed highly turbulent opposed jet flows. Proc. Combust. Inst. 33(1), 1391–1399 (2011)CrossRefGoogle Scholar
  42. 42.
    Ranz, M., Marshall W., R.: Evaporation from drops: part I. Chem. Eng. Prog. 48, 141–146 (1952)Google Scholar
  43. 43.
    Reid, C.M., Thornock, J.N., Smith, P.J.: Application of direct quadrature method of moments (DQMOM) to pulverized coal devolatilization. In: 35th Internat. Tech. Conf. Clean Coal & Fuel Sys. Clearwater, Florida (2010)Google Scholar
  44. 44.
    Schiller, L., Naumann, A.: Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung. Zeitschr. Verein dt. Ing. 77, 318–320 (1933)Google Scholar
  45. 45.
    Schnell, U.: Numerical modelling of solid fuel combustion processes using advanced CFD-based simulation tools. Prog. Comput. Fluid Dyn. 1(4), 208–218 (2001)zbMATHGoogle Scholar
  46. 46.
    Sergent, E.: Vers une methodologie de couplage entre la simulation des grandes echelles et les modeles statistiques. Ph.D. thesis, LEcole Centrale de Lyon, Lyon, France (2002)Google Scholar
  47. 47.
    Smagorinsky, J.: General circulation experiments with the primitive equations, 1. The basic experiment. Mon. Weather Rev. 91(3), 99–164 (1963)CrossRefGoogle Scholar
  48. 48.
    Smith, I.: The intrinsic reactivity of carbons to oxygen. Fuel 57, 409–414 (1978)CrossRefGoogle Scholar
  49. 49.
    Solomon, P.R., Fletcher, T.H., Pugmire, R.J.: Progress in coal pyrolysis. Fuel 72(5), 587–597 (1993)CrossRefGoogle Scholar
  50. 50.
    Spalding, D.B.: Development of the eddy-break-up model of turbulent combustion. Proc. Combust. Inst. 16(1), 1657–1663 (1977)Google Scholar
  51. 51.
    Stein, O.T., Böhm, B., Dreizler, A., Kempf, A.M.: Highly-resolved LES and PIV analysis of isothermal turbulent opposed jets for combustion applications. Flow Turbul. Combust. 87, 425–447 (2011)zbMATHCrossRefGoogle Scholar
  52. 52.
    Stein, O.T., Kempf, A.M., Ma, T., Olbricht, C., Duncan, A., Lewis, G.: Large eddy simulation of non-reacting flow in a 40MW pulverised coal combustor. Prog. Comput. Fluid Dyn. 11(6), 397–402 (2011)CrossRefGoogle Scholar
  53. 53.
    Tognotti, L., Coraggio, G., Biasci, L., Faleni, M., Cecchini, D., Tanzini, G., Carrai, L.: Development and qualification of conventional and novel industrial combustion test probes. In: 25th German Flame Day (VDI Flammentag). Karlsruhe, Germany (2011)Google Scholar
  54. 54.
    Watanabe, H., Kurose, R., Komori, S.: Large-Eddy Simulation of swirling flows in a pulverized coal combustion furnace with a complex burner. J. Environ. Eng. 4(1), 1–11 (2009)CrossRefGoogle Scholar
  55. 55.
    Watanabe, H., Tanno, K., Baba, Y., Kurose, R., Komori, S.: Large-eddy simulation of coal combustion in a pulverized coal combustion furnace with a complex burner. In: Hanjalic, K., Nagano, Y., Jakirlic, S.(eds.), pp.1027-1030. Turbul. Heat Mass Transfer 6. Roma, Italy, (Sep. 14–18), (and CD-ROM) (2009)Google Scholar
  56. 56.
    Williams, A., Backreedy, R., Habib, R., Jones, J.M., Pourkashanian, M.: Modelling coal combustion: the current position. Fuel 81, 605–618 (2002)CrossRefGoogle Scholar
  57. 57.
    Williams, A., Pourkashanian, M., Jones, J.: Combustion of pulverised coal and biomass. Prog. Energ. Combust. Sci. 27(6), 587–610 (2001)CrossRefGoogle Scholar
  58. 58.
    Yamamoto, K., Murota, T., Okazaki, T., Taniguchi, M.: Large eddy simulation of a pulverized coal jet flame ignited by a preheated gas flow. Proc. Combust. Inst. 33, 1771–1778 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Institut für Technische VerbrennungUniversität StuttgartStuttgartGermany
  2. 2.Imperial College LondonLondonUK
  3. 3.Mechanical Engineering DepartmentUniversità degli Studi di CagliariCagliariItaly
  4. 4.ZIK Virtuhcon, Chair of Numerical Thermo-Fluid-DynamicsTechnische Universität (TU) Bergakademie FreibergFreibergGermany

Personalised recommendations