Flow, Turbulence and Combustion

, Volume 90, Issue 4, pp 681–707 | Cite as

New Directions in Advanced Modeling and in Situ Measurements Near Reacting Surfaces

Article

Abstract

Multidimensional numerical modeling and in situ spatially-resolved measurements of gas-phase thermoscalars over the catalyst boundary layer have fostered fundamental investigation of the heterogeneous and homogeneous chemical reaction pathways and their coupling at realistic operating conditions. The methodology for validating catalytic and gas-phase reaction mechanisms is firstly outlined for industrially-relevant fuels. Combination of advanced modeling and in situ near-wall species and velocity measurements is then used to address the intricate interplay between interphase fluid transport (laminar or turbulent) and hetero-/homogeneous kinetics. Controlling parameters of this interplay are the homogeneous ignition chemistry, flame propagation characteristics, competition between the catalytic and gaseous pathways for fuel consumption, diffusional imbalance of the limiting reactant, flow laminarization due to heat transfer from the hot catalytic walls, and fuel leakage through the gaseous reaction zone. Dynamic reactor operation and intrinsic flame dynamics driven by interactions between homogeneous kinetics and catalytic walls are outlined using detailed transient simulation. It is shown that the presence of catalytic reactions moderates flame instabilities. Future directions for transient modeling and for temporally-resolved in situ near-wall measurements are finally summarized.

Keywords

Hetero-/homogeneous combustion modeling Near-wall in situ Raman LIF and PIV measurements  Homogeneous ignition over catalytic surfaces Turbulent channel flow catalytic combustion Flame dynamics in catalytic channels 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Karagiannidis, S., Mantzaras, J., Jackson, G., Boulouchos, K.: Hetero-/homogeneous combustion and stability maps in methane-fueled microreactors. Proc. Combust. Inst. 31, 3309–3317 (2007)CrossRefGoogle Scholar
  2. 2.
    Schneider, B., Karagiannidis, S., Bruderer, M., Dyntar, D., Zwyssig, C., Guangchun, Q., Diener, M., Boulouchos, K., Abhari, R.S., Guzzella, L., Kolar, J.W.: Ultra-high-energy-density converter for portable power. Paper presented at the Power-MEMS 2005, Tokyo, Japan, 28–30 Nov 2005Google Scholar
  3. 3.
    Carroni, R., Griffin, T., Mantzaras, J., Reinke, M.: High-pressure experiments and modeling of methane/air catalytic combustion for power-generation applications. Catal. Today 83(1–4), 157–170 (2003)CrossRefGoogle Scholar
  4. 4.
    Griffin, T., Winkler, D., Wolf, M., Appel, C., Mantzaras, J.: Staged catalytic combustion method for the advanced zero emissions gas turbine power plant. ASME, paper No. 2004-54101 (2004)Google Scholar
  5. 5.
    Christmann, K., Freund, H.J., Kim, J., Koel, B., Kuhlenbeck, H., Morgenstern, M., Panja, C., Pirug, G., Rupprechter, G., Samano, E., Somorjai, G.A.: Adsorption of molecules on metal, semiconductor and oxide surfaces. Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology - New Series, Springer Verlag, New York (2006)Google Scholar
  6. 6.
    Singh, J., Nelson, R.C., Vicente, B.C., Scott, S.L., van Bokhoven, J.: Electronic structure of alumina-supported monometallic Pt and bimetallic PtSn catalysts under hydrogen and carbon monoxide environment. Phys. Chem. Chem. Phys. 12(21), 5668–5677 (2010)CrossRefGoogle Scholar
  7. 7.
    Griffin, T.A., Calabrese, M., Pfefferle, L.D., Sappey, A., Copeland, R., Crosley, D.R.: The influence of catalytic activity on the ignition of boundary-layer flows 3. Hydroxyl radical measurements in low- pressure boundary-layer flows. Combust. Flame 90(1), 11–33 (1992)CrossRefGoogle Scholar
  8. 8.
    Dogwiler, U., Mantzaras, J., Benz, P., Kaeppeli, B., Bombach, R., Arnold, A.: Homogeneous ignition of methane/air mixtures over platinum: comparison of measurements and detailed numerical predictions. Proc. Combust. Inst. 27, 2275–2282 (1998)Google Scholar
  9. 9.
    Appel, C., Mantzaras, J., Schaeren, R., Bombach, R., Inauen, A., Kaeppeli, B., Hemmerling, B., Stampanoni, A.: An experimental and numerical investigation of homogeneous ignition in catalytically stabilized combustion of hydrogen/air mixtures over platinum. Combust. Flame 128(4), 340–368 (2002)CrossRefGoogle Scholar
  10. 10.
    Reinke, M., Mantzaras, J., Schaeren, R., Bombach, R., Inauen, A., Schenker, S.: High-pressure catalytic combustion of methane over platinum: in situ experiments and detailed numerical predictions. Combust. Flame 136(1–2), 217–240 (2004)CrossRefGoogle Scholar
  11. 11.
    Reinke, M., Mantzaras, J., Bombach, R., Schenker, S., Inauen, A.: Gas phase chemistry in catalytic combustion of methane/air mixtures over platinum at pressures of 1 bar to 16 bar. Combust. Flame 141, 448–468 (2005)CrossRefGoogle Scholar
  12. 12.
    Pfefferle, W.C., Pfefferle, L.D.: Catalytically stabilized combustion. Prog. Energy Combust. Sci. 12(1), 25–41 (1986)CrossRefGoogle Scholar
  13. 13.
    Dogwiler, U., Benz, P., Mantzaras, J.: Two-dimensional modelling for catalytically stabilized combustion of a lean methane-air mixture with elementary homogeneous and heterogeneous chemical reactions. Combust. Flame 116(1–2), 243–258 (1999)CrossRefGoogle Scholar
  14. 14.
    Mantzaras, J., Benz, P.: An asymptotic and numerical investigation of homogeneous ignition in catalytically stabilized channel flow combustion. Combust. Flame 119(4), 455–472 (1999)CrossRefGoogle Scholar
  15. 15.
    Mantzaras, J., Appel, C.: Effects of finite rate heterogeneous kinetics on homogeneous ignition in catalytically stabilized channel flow combustion. Combust. Flame 130(4), 336–351 (2002)CrossRefGoogle Scholar
  16. 16.
    Andrae, J.C.G., Björnbom, P.H.: Wall effects of laminar hydrogen flames over platinum and inert surfaces. AICHE J. 46, 1454–1460 (2000)CrossRefGoogle Scholar
  17. 17.
    Bui, P.A., Vlachos, D.G., Westmoreland, P.R.: Homogeneous ignition of hydrogen/air mixtures over platinum. Proc. Combust. Inst. 26, 1763–1770 (1996)Google Scholar
  18. 18.
    Reinke, M., Mantzaras, J., Bombach, R., Schenker, S., Tylli, N., Boulouchos, K.: Effects of H2O and CO2 dilution on the catalytic and gas-phase combustion of methane over platinum at elevated pressures. Combust. Sci. Technol. 179, 553–600 (2006)CrossRefGoogle Scholar
  19. 19.
    Groppi, G., Ibashi, W., Tronconi, E., Forzatti, P.: Structured reactors for kinetic measurements under severe conditions in catalytic combustion over palladium supported systems. Catal. Today 69(1–4), 399–408 (2001)CrossRefGoogle Scholar
  20. 20.
    Lyubovsky, M., Pfefferle, L.: Complete methane oxidation over Pd catalyst supported on alpha- alumina. Influence of temperature and oxygen pressure on the catalyst activity. Catal. Today 47(1–4), 29–44 (1999)CrossRefGoogle Scholar
  21. 21.
    Song, X., Williams, W.R., Schmidt, L.D., Aris, R.: Bifurcation behavior in homogeneous-heterogeneous combustion: 2. Computations for stagnation-point flow. Combust. Flame 84(3–4), 292–311 (1991)CrossRefGoogle Scholar
  22. 22.
    Deutschmann, O., Schmidt, R., Behrendt, F., Warnatz, J.: Numerical modeling of catalytic ignition. Proc. Combust. Inst. 26, 1747–1754 (1996)Google Scholar
  23. 23.
    Aghalayam, P., Park, Y.K., Vlachos, D.G.: A detailed surface reaction mechanism for CO oxidation on Pt. Proc. Combust. Inst. 28, 1331–1339 (2000)CrossRefGoogle Scholar
  24. 24.
    Sidwell, R.W., Zhu, H.Y., Kee, R.J., Wickham, D.T.: Catalytic combustion of premixed methane-in-air on a high-temperature hexaaluminate stagnation surface. Combust. Flame 134(1–2), 55–66 (2003)CrossRefGoogle Scholar
  25. 25.
    Ghermay, Y., Mantzaras, J., Bombach, R.: Effects of hydrogen preconversion on the homogeneous ignition of fuel lean H2/O2/N2/CO2 mixtures over platinum at moderate pressures. Combust. Flame 157, 1942–1958 (2010)CrossRefGoogle Scholar
  26. 26.
    Ghermay, Y., Mantzaras, J., Bombach, R.K.B.: Homogeneous combustion of fuel lean H2/O2/N2 mixtures over platinum at elevated pressures and preheats. Combust. Flame 158, 1491–1506 (2011)CrossRefGoogle Scholar
  27. 27.
    Ghermay, Y., Mantzaras, J., Bombach, R.: Experimental and numerical investigation of hetero-/homogeneous combustion of CO/H2/O2/N2 mixtures over platinum at pressures up to 5 bar. Proc. Combust. Inst. 33, 1827–1835 (2011)CrossRefGoogle Scholar
  28. 28.
    Appel, C., Mantzaras, J., Schaeren, R., Bombach, R., Inauen, A.: Turbulent catalytically stabilized combustion of hydrogen/air mixtures in entry channel flows. Combust. Flame 140, 70–92 (2005)CrossRefGoogle Scholar
  29. 29.
    Groppi, G., Belloli, A., Tronconi, E., Forzatti, P.: A comparison of lumped and distributed models of monolith catalytic combustors. Chem. Eng. Sci. 50(17), 2705–2715 (1995)CrossRefGoogle Scholar
  30. 30.
    Mantzaras, J., Appel, C., Benz, P.: Catalytic combustion of methane/air mixtures over platinum: homogeneous ignition distances in channel flow configurations. Proc. Combust. Inst. 28, 1349–1357 (2000)CrossRefGoogle Scholar
  31. 31.
    Kee, R.J., Dixon-Lewis, G., Warnatz, J., Coltrin, M.E., Miller, J.A.: A Fortran computer code package for the evaluation of gas-phase multicomponent transport properties. In. Sandia National Laboratories Report No. SAND86-8246, Livermore, USA (1996)Google Scholar
  32. 32.
    Mladenov, N., Koop, J., Tischer, S., Deutschmann, O.: Modeling of transport and chemistry in channel flows of automotive catalytic converters. Chem. Eng. Sci. 65, 812–826 (2010)CrossRefGoogle Scholar
  33. 33.
    Sinha, N., Bruno, C., Bracco, F.V.: Two-dimensional, transient catalytic combustion of CO-air on platinum. Physicochem. Hydrodyn. 6(4), 373–391 (1985)Google Scholar
  34. 34.
    Deutschmann, O., Maier, L.I., Riedel, U., Stroemman, A.H., Dibble, R.W.: Hydrogen assisted catalytic combustion of methane on platinum. Catal. Today 59(1–2), 141–150 (2000)CrossRefGoogle Scholar
  35. 35.
    Warnatz, J., Dibble, R.W., Maas, U.: Combustion, Physical and Chemical Fundamentals, Modeling and Simulation. Springer-Verlag, New York (1996)Google Scholar
  36. 36.
    Reinke, M., Mantzaras, J., Schaeren, R., Bombach, R., Kreutner, W., Inauen, A.: Homogeneous ignition in high-pressure combustion of methane/air over platinum: comparison of measurements and detailed numerical predictions. Proc. Combust. Inst. 29, 1021–1029 (2002)CrossRefGoogle Scholar
  37. 37.
    Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C., Lissianski, V., Qin, Z.: An optimized detailed chemical reaction mechanism for methane combustion. In: Gas Research Institute (2000)Google Scholar
  38. 38.
    Hughes, K.J., Turanyi, T., Clague, A., Pilling, M.J.: Development and testing of a comprehensive chemical mechanism for the oxidation of methane. Int. J. Chem. Kinet. 33, 513–538 (2001)CrossRefGoogle Scholar
  39. 39.
    Reinke, M., Mantzaras, J., Schaeren, R., Bombach, R., Inauen, A., Schenker, S.: Homogeneous ignition of CH4/air and H2O- and CO2-diluted CH4/O2 mixtures over platinum; an experimental and numerical investigation at pressures up to 16 bar. Proc. Combust. Inst. 30, 2519–2527 (2005)CrossRefGoogle Scholar
  40. 40.
    Karagiannidis, S., Mantzaras, J., Schenker, S., Boulouchos, K.: Experimental and numerical investigation of the hetero-/homogeneous combustion of lean propane/air mixtures over platinum. Proc. Combust. Inst. 32, 1947–1955 (2009)CrossRefGoogle Scholar
  41. 41.
    Garetto, T.F., Rincon, E., Apesteguia, C.R.: Deep oxidation of propane on Pt-supported catalysts: drastic turnover rate enhancement using zeolite supports. Appl. Catal. B-Environ. 48, 167–174 (2004)CrossRefGoogle Scholar
  42. 42.
    Qin, Z., Lissianski, V.V., Yang, H., Gardiner, W.C., Davis, S.G., Wang, H.: Combustion chemistry of propane: a case study of detailed reaction mechanism optimization. Proc. Combust. Inst. 28, 1663–1669 (2000)CrossRefGoogle Scholar
  43. 43.
    Mueller, M.A., Kim, T.J., Yetter, R.A., Dryer, F.L.: Flow reactor studies and kinetic modeling of the H2/O2 reaction. Int. J. Chem. Kinet. 31(2), 113–125 (1999)CrossRefGoogle Scholar
  44. 44.
    Miller, J.A., Bowman, C.T.: Mechanism and modeling of nitrogen chemistry in combustion. Prog. Energ. Combust. 15(4), 273–338 (1989)CrossRefGoogle Scholar
  45. 45.
    Mantzaras, J., Bombach, R., Schaeren, R.: Hetero-/homogeneous combustion of hydrogen/air mixtures over platinum at pressures up to 10 bar. Proc. Combust. Inst. 32, 1937–1945 (2009)CrossRefGoogle Scholar
  46. 46.
    Li, J., Zhao, Z., Kazakov, A., Dryer, F.L.: An updated comprehensive kinetic model of hydrogen combustion. Int. J. Chem. Kinet. 36, 566–575 (2004)CrossRefGoogle Scholar
  47. 47.
    Glassman, I.: Combustion, 3rd edn. Academic Press, London (1996)Google Scholar
  48. 48.
    Mantzaras, J.: Catalytic combustion of syngas. Combust. Sci. Technol. 180, 1137–1168 (2008)CrossRefGoogle Scholar
  49. 49.
    Ezato, K., Shehata, A.M., Kunugi, T., McEligot, D.M.: Numerical prediction of transitional features of turbulent forced gas flows in circular tubes with strong heating. ASME Transactions Journal of Heat Transfer 121(3), 546–555 (1999)CrossRefGoogle Scholar
  50. 50.
    Satake, S., Kunugi, T., Shehata, A.M., McEligot, D.M.: Direct numerical simulation for laminarization of turbulent forced gas flows in circular tubes with strong heating. Int. J. Heat Fluid Flow 21(5), 526–534 (2000)CrossRefGoogle Scholar
  51. 51.
    Mantzaras, J., Appel, C., Benz, P., Dogwiler, U.: Numerical modelling of turbulent catalytically stabilized channel flow combustion. Catal. Today 59(1–2), 3–17 (2000)CrossRefGoogle Scholar
  52. 52.
    Appel, C., Mantzaras, J., Schaeren, R., Bombach, R., Kaeppeli, B., Inauen, A.: An experimental and numerical investigation of turbulent catalytically stabilized channel flow combustion of hydrogen/air mixtures over platinum. Proc. Combust. Inst. 29, 1031–1038 (2002)CrossRefGoogle Scholar
  53. 53.
    Chen, H.C., Patel, V.C.: Near-wall turbulence models for complex flows including separation. AIAA J. 26(6), 641–648 (1988)CrossRefGoogle Scholar
  54. 54.
    Hwang, C.B., Lin, C.A.: Improved low-Reynolds-number k-ε model based on direct numerical simulation data. AIAA J. 36(1), 38–43 (1998)MATHCrossRefGoogle Scholar
  55. 55.
    Liu, Z.C., Landreth, C.C., Adrian, R.J., Hanratty, T.J.: High resolution measurement of turbulent structure in a channel with particle image velocimetry. Exp. Fluids 10, 301–312 (1991)CrossRefGoogle Scholar
  56. 56.
    Lucci, F., Frouzakis, C.E., Mantzaras, J.: Three-dimensional direct numerical simulation of turbulent catalytic combustion of hydrogen over platinum. Proc. Combust. Inst. 34, 2295–2302 (2013)CrossRefGoogle Scholar
  57. 57.
    Karagiannidis, S., Mantzaras, J.: Numerical investigation on the start-up of methane-fueled catalytic microreactors. Combust. Flame 157, 1400–1413 (2010)CrossRefGoogle Scholar
  58. 58.
    Schneider, A., Mantzaras, J., Eriksson, S.: Ignition and extinction in catalytic partial oxidation of methane-oxygen mixtures with large H2O and CO2 dilution. Combust. Sci. Technol. 180, 89–126 (2008)CrossRefGoogle Scholar
  59. 59.
    Pizza, G., Mantzaras, J., Frouzakis, C.E., Tomboulides, A.G., Boulouchos, K.: Suppression of combustion instabilities of premixed hydrogen/air flames in microchannels using heterogeneous reactions. Proc. Combust. Inst. 32, 3051–3058 (2009)CrossRefGoogle Scholar
  60. 60.
    Pizza, G., Mantzaras, J., Frouzakis, C.E.: Flame dynamics in catalytic and non-catalytic mesoscale microreactors. Catal. Today 155, 123–130 (2010)CrossRefGoogle Scholar
  61. 61.
    Pizza, G., Frouzakis, C.E., Mantzaras, J., Tomboulides, A.G., Boulouchos, K.: Dynamics of premixed hydrogen/air flames in microchannels. Combust. Flame 152(3), 433–450 (2008)CrossRefGoogle Scholar
  62. 62.
    Pizza, G., Frouzakis, C.E., Mantzaras, J., Tomboulides, A.G., Boulouchos, K.: Dynamics of premixed hydrogen/air flames in mesoscale channels. Combust. Flame 155(1–2), 2–20 (2008)CrossRefGoogle Scholar
  63. 63.
    Pizza, G., Frouzakis, C.E., Mantzaras, J., Tomboulides, A.G., Boulouchos, K.: Three-dimensional simulations of premixed hydrogen/air flames in micro tubes. J. Fluid. Mech. 658, 463–491 (2010)MATHCrossRefGoogle Scholar
  64. 64.
    Slinko, M.M., Jaeger, N.I.: Oscillatory Heterogeneous Catalytic Systems, vol. 86. Studies in Surface Science and Catalysis, Elsevier, Amsterdam (1994)Google Scholar
  65. 65.
    Brambilla, A., Ghermay, Y., Frouzakis, C.E., Mantzaras, J., Bombach, R.: Experimental and numerical investigation of combustion dynamics in lean premixed CO/H2/air mixtures in a mesoscale channel. Paper presented at the 13th international conference on numerical combustion, Corfu, Greece, 27–29 April 2011Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Paul Scherrer InstituteCombustion ResearchVilligen PSISwitzerland

Personalised recommendations