Skip to main content
Log in

Numerical Investigation of a MILD Combustion Burner: Analysis of Mixing Field, Chemical Kinetics and Turbulence-Chemistry Interaction

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A numerical study of a jet-in-hot coflow (JHC) burner emulating Moderate or Intense Low-oxygen Dilution (MILD) combustion conditions was carried out by solving the Reynolds Averaged Navier-Stokes equations in a two-dimensional axisymmetric domain and using the Eddy Dissipation Concept (EDC) for the turbulence-chemistry interaction treatment. A systematic methodology was used to analyze all possible sources of discrepancies observed between experimental and numerical data, trying to shedding light on the suitability of specific models for MILD combustion. In this regard, the deficiencies that may come from turbulence model or kinetic scheme have been shown by comparative study on four variants of the k-ε model (i.e. the standard, modified, realizable and RNG) together with the Reynolds stress model and three kinetic schemes namely KEE-58, DRM-19 and DRM-22. A variation of an EDC parameter (i.e. increasing the constant of the fine structure residence time) was proposed for better consideration of MILD combustion features and to overcome the over-prediction of peak temperature observed at downstream. In such a manner encouraging results were also obtained for the prediction of major combustion products as well as for CO and OH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cavaliere, A., de Joannon, M.: MILD combustion. Prog. Energy Combust. Sci. 30, 329–366 (2004)

    Article  Google Scholar 

  2. Wünning, J.A., Wünning, J.G.: Flameless oxidation to reduce thermal NO-formation. Prog. Energy Combust. Sci. 23, 81–94 (1997)

    Article  Google Scholar 

  3. Plessing, T., Peters, N., Wuenning, J.G.: Laseroptical investigation of highly preheated combustion with strong exhaust gas recirculation. Proc. Combust. Inst. 27, 3197–3204 (1998)

    Google Scholar 

  4. Katsuki, M., Hasegawa T.: The science and technology of combustion in highly preheated air. Proc. Combust. Inst. 27, 3135–3146 (1998)

    Google Scholar 

  5. Tsuji, H., Gupta, A.K., Hasegawa, T., Katsuki, M., Kishimoto, K., Morita, M.: High Temperature Air Combustion: From Energy Conservation to Pollution Reduction. CRC, New York (2003)

    Google Scholar 

  6. Choi, G.M., Katsuki, M.: Advanced low NOx combustion using highly preheated air. Energy Convers. Manag. 42, 639–652 (2001)

    Article  Google Scholar 

  7. Derudi, M., Villani A., Rota, R.: Sustainability of mild combustion of hydrogen-containing hybrid fuels. Proc. Combust. Inst. 31, 3393–3400 (2007)

    Article  Google Scholar 

  8. Sabia, P., de Joannon, M., Fierro, S., Tregrossi, A., Cavaliere, A.: Hydrogen enriched methane Mild combustion in a well stirred reactor. Exp. Therm. Fluid Sci. 31, 469–475 (2007)

    Article  Google Scholar 

  9. Parente, A., Galletti, C., Tognotti, L.: Effect of the combustion model and kinetic mechanism on the MILD combustion in an industrial burner fed with hydrogen enriched fuels. Int. J. Hydrogen Energy 33, 7553–7564 (2008)

    Article  Google Scholar 

  10. Duwig, C., Stankovic, D., Fuchs, L., Li, G., Gutmark, E.: Experimental and numerical study of flameless combustion in a model gas turbine combustor. Combust. Sci. Technol. 180, 279–295 (2008)

    Article  Google Scholar 

  11. Galletti, C., Parente, A., Tognotti, L.: Numerical and experimental investigation of a mild combustion burner. Combust. Flame 151, 649–664 (2007)

    Article  Google Scholar 

  12. Parente, A., Galletti, C., Tognotti, L.: A simplified approach for predicting NO formation in MILD combustion of CH4-H2 mixtures. Proc. Comb. Inst. 33, 3343–3350 (2011)

    Article  Google Scholar 

  13. Mancini, M., Schwöppe, P., Weber, R., Orsino, S.: On mathematical modeling of flameless combustion. Combust. Flame 150, 54–59 (2007)

    Article  Google Scholar 

  14. Galletti, C., Parente, A., Derudi, M., Rota, R., Tognotti, L.: Numerical and experimental analysis of NO emissions from a lab-scale burner fed with hydrogen-enriched fuels and operating in MILD combustion. Int. J. Hydrogen Energy 34, 8339–8351 (2009)

    Article  Google Scholar 

  15. Coelho, P.J., Peters, N.: Numerical simulation of a mild combustion burner. Combust. Flame 124, 503–518 (2001)

    Article  Google Scholar 

  16. Christo, F.C., Dally, B.B.: Modeling turbulent reacting jets issuing into a hot and diluted coflow. Combust. Flame 142, 117–129 (2005)

    Article  Google Scholar 

  17. Christo, F.C., Dally, B.B.: Application of transport PDF approach for modeling MILD combustion. In: Proceedings of the Fifteenth Australian Fluid Mechanic Conference, University of Sydney, Sydney, Australia, 13–17 December (2004)

  18. Kim, S.H., Huh, K.Y., Dally, B.B.: Conditional moment closure modeling of turbulent nonpremixed combustion in diluted hot coflow. Proc. Combust. Inst. 30, 751–757 (2005)

    Article  Google Scholar 

  19. Frassoldati, A., Sharma, P., Cuoci, A., Faravelli, T., Ranzi, E.: Kinetic and fluid dynamics modeling of methane/hydrogen jet flames in diluted coflow. Appl. Therm. Eng. 30, 376–383 (2010)

    Article  Google Scholar 

  20. Ihme, M., See, Y.C.: LES flamelet modeling of a three-stream MILD combustor: Analysis of flame sensitivity to scalar inflow conditions. Proc. Combust. Inst. 33, 1309–1317 (2011)

    Article  Google Scholar 

  21. Mardani, A., Tabejamaat, S.: Effect of hydrogen on hydrogen-methane turbulent non-premixed flame under MILD condition. Int. J. Hydrogen Energy 35, 11324–11331 (2010)

    Article  Google Scholar 

  22. Mardani, A., Tabejamaat, S., Ghamari, M.: Numerical study of influence of olecular diffusion in the Mild combustion regime. Combust. Theory Model. 14(5), 747–774 (2010)

    Article  MATH  Google Scholar 

  23. Kim, J.P., Schnell, U., Scheffknecht, G.: Comparison of different global reaction mechanisms for MILD combustion of natural gas. Combust. Sci. Tech. 180, 565–592 (2008)

    Article  Google Scholar 

  24. Parente, A., Sutherland, J.C., Dally, B.B., Tognotti, L., Smith, P.J.: Investigation of the MILD combustion regime via principal component analysis. Proc. Combust. Inst. 33, 3333–3341 (2011)

    Article  Google Scholar 

  25. Dally, B.B., Karpetis, A.N., Barlow, R.S.: Structure of turbulent non-premixed jet flames in a diluted hot coflow. Proc. Combust. Inst. 29, 1147–1154 (2002)

    Article  Google Scholar 

  26. Oldenhof, E., Tummers, M.J., van Veen, E.H., Roekaerts, D.J.E.M.: Role of entrainment in the stabilisation of jet-in-hot-coflow flames. Combust. Flame 158(8), 1553–1563 (2011)

    Article  Google Scholar 

  27. Sung, C.J., Law, C.K., Chen, J.Y.: Augmented reduced mechanisms for NO emission in methane oxidation. Combust. Flame 125, 906–919 (2001)

    Article  Google Scholar 

  28. Magnussen, B.F.: On the structure of turbulence and a generalized Eddy Dissipation Concept for chemical reactions in turbulent flows. In: 19th AIAA, Sc. Meeting, St. Louis, USA (1981)

  29. Pope, S.B.: Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust. Theory Model. 1, 41–63 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. De, A., Oldenhof, E., Sathiah, P., Roekaerts, D.: Numerical simulation of Delft-jet-in-hot-coflow (DJHC) flames using the Eddy Dissipation Concept model for turbulence-chemistry interaction. Flow Turbul. Combust. 87, 537–567 (2011)

    Article  MATH  Google Scholar 

  31. Roy, C.J.: Review of code and solution verification procedures for computational simulation. J. Comput. Phys. 205, 131–156 (2005)

    Article  MATH  Google Scholar 

  32. Fluent, The FLUENT 6.3 User’s Guide, Fluent Inc. (2005)

  33. Pope, S.B.: An explanation of the turbulent round jet/plane jet anomaly. AIAA J. 16(3), 279–281 (1978)

    Article  MathSciNet  Google Scholar 

  34. Bilger, R.W., Starner, S.H., Kee, R.J.: On reduced mechanism for methan-air combustion in nonpremixed flames. Combust. Flame 80, 135–149 (1990)

    Article  Google Scholar 

  35. Kazakov, A., Frenklach, M.: Reduced reaction sets based on GRI-Mech 1.2. http://www.me.berkeley.edu/drm/. Accessed 15 March 2011

  36. GRI-Mech 1.2.: http://diesel.me.berkeley.edu/~gri_mech/new21/releases.html. Accessed 15 March 2011

  37. de Joannon, M., Saponaro, A., Cavaliere, A.: Zero-dimensional analysis of diluted oxidation of methane in rich conditions. Proc. Combust. Inst. 28, 1639–1646 (2000)

    Article  Google Scholar 

  38. GRI 3.0 Mech: http://www.me.berkeley.edu/gri_mech/. Accessed 15 March 2011

  39. McGee, H.A.: Molecular Engineering. New York, McGraw-Hill (1991)

    Google Scholar 

  40. Smith, T.F., Shen, Z.F., Friedman, J.N.: Evaluation of coefficients for the weighted sum of gray gases model. J. Heat Transfer 104, 602–608 (1982)

    Article  Google Scholar 

  41. Versteeg, H.K., Malalasekera, W.: An Introduction to Computational FLuid Dynamics: The FInite Volume Method. Addison Wesley-Longman (1995)

  42. Costa-Patry, E., Mydlarski, L.: Mixing of two thermal fields emitted from line sources in turbulent channel flow. J. Fluid Mech. 609, 349–375 (2008)

    Article  MATH  Google Scholar 

  43. Aminian, J., Galletti, C., Shahhosseini, S., Tognotti, L.: Key modeling issues in prediction of minor species in diluted-preheated combustion conditions. Appl. Therm. Eng. 31, 3287–3300 (2011)

    Article  Google Scholar 

  44. Kumar, S., Paul, P.J., Mukunda, H.S.: Prediction of flame liftoff height of diffusion/partially premixed jet flames and modeling of mild combustion burners. Combust. Sci. Tech. 179, 2219–2253 (2007)

    Article  Google Scholar 

  45. de Joannon, M., Cavaliere, A., Faravelli, T., Ranzi, E., Sabia, P., Tregrossi, A.: Analysis of process parameters for steady operations in methane mild combustion technology. Proc. Combust. Inst. 30, 2605–2612 (2005)

    Article  Google Scholar 

  46. Correa, S.M.: Turbulent-chemistry interactions in the intermediate regime of premixed combustion. Combust. Flame 93(1–2), 41–60 (1993)

    Article  Google Scholar 

  47. Medwell, P.R., Kalt, P.A.M., Dally, B.B.: Simultaneous imaging of OH, formaldehyde, and temperature of turbulent nonpremixed jet flames in a heated and diluted coflow. Combust. Flame 148, 48–61 (2007)

    Article  Google Scholar 

  48. Ertesvåg, I.S., Magnussen, B.F.: The Eddy Dissipation Turbulence energy cascade model. Combust. Sci. Tech. 159, 213–235 (2000)

    Article  Google Scholar 

  49. Gran, I.R., Magnussen, B.F.: A numerical study of a bluff-body stabilized diffusion flame. Part 2. Influence of combustion modeling and finite-rate chemistry. Combust. Sci. Tech. 119, 191–217 (1996)

    Article  Google Scholar 

  50. Rehm, M., Seifert, P., Meyer, B.: Theoretical and numerical investigation on the EDC-model for turbulence–chemistry interaction at gasification conditions. Comp. Chem. Eng. 33, 402–407 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shahrokh Shahhosseini or Leonardo Tognotti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aminian, J., Galletti, C., Shahhosseini, S. et al. Numerical Investigation of a MILD Combustion Burner: Analysis of Mixing Field, Chemical Kinetics and Turbulence-Chemistry Interaction. Flow Turbulence Combust 88, 597–623 (2012). https://doi.org/10.1007/s10494-012-9386-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-012-9386-z

Keywords

Navigation