Skip to main content
Log in

Conditional Moment Closure/Large Eddy Simulation of the Delft-III Natural Gas Non-premixed Jet Flame

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Large-Eddy Simulation (LES), coupled with the Conditional Moment Closure (CMC) sub-grid model and the GRI3 detailed chemical mechanism, are used to explore the structure of the Delft III piloted turbulent non-premixed flame. The use of a quite refined multi-dimensional CMC grid and the detailed chemistry, together with the capability of LES to follow local fluctuations of the scalar dissipation, allow the prediction of localised extinctions and re-ignitions in locations consistent with experiment. The statistics of velocity, mixture fraction, temperature, mass fractions of the major species and of OH are overall in good agreement with experimental data. Carbon monoxide is captured very well, but NO is overpredicted, perhaps due to inherent limitations of the GRI3 scheme to capture NO emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ayache, S., Dawson, J., Triantafyllidis, A., Balachandran, R., Mastorakos, E.: Experiments and Large-Eddy Simulations of acoustically forced bluff-body flows. Int. J. Heat Fluid Flow 31(5), 754–766 (2010)

    Article  Google Scholar 

  2. Barlow, R., Karpetis, A., Frank, J., Chen, J.: Scalar profiles and NO formation in laminar opposed-flow partially premixed methane/air flames. Combust. Flame 127(3), 2102–2118 (2001)

    Article  Google Scholar 

  3. Branley, N., Jones, W.: Large eddy simulation of a turbulent non-premixed flame. Combust. Flame 127(1–2), 1914–1934 (2001)

    Article  Google Scholar 

  4. Cao, R., Pope, S.: The influence of chemical mechanisms on PDF calculations of nonpremixed piloted jet flames. Combust. Flame 143(4), 450–470 (2005)

    Article  Google Scholar 

  5. Cook, A., Riley, J.: A subgrid model for equilibrium chemistry in turbulent flows. Phys. Fluids 6, 2868–2870 (1994)

    Article  Google Scholar 

  6. De Vries, J.: Study on Turbulent Fluctuations in Diffusion Flames Using Laser-induced Fluorescence. Ph.D. thesis, Delft University of Technology (1994)

  7. Garmory, A., Mastorakos, E.: Capturing localised extinction in sandia flame f with les-cmc. Proc. Combust. Inst. 33(1), 1673–1680 (2011)

    Article  Google Scholar 

  8. Germano, M., Piomelli, U., Moin, P., Cabot, W.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3(7), 1760–1765 (1991)

    Article  MATH  Google Scholar 

  9. Hussain, F., Jeong, J.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. James, S., Zhu, J., Anand, M.: Large-Eddy simulations as a design tool for gas turbine combustion systems. AIAA J. 44(4), 674–686 (2006)

    Article  Google Scholar 

  11. Klimenko, A.: Note on the conditional moment closure in turbulent shear flows. Phys. Fluids 7, 446 (1995)

    Article  MATH  Google Scholar 

  12. Klimenko, A., Bilger, R.: Conditional moment closure for turbulent combustion. Pror. Energy Combust. Sci. 25(6), 595–688 (1999)

    Article  Google Scholar 

  13. Mantzaras, J., van der Meer, T.: Coherent anti-stokes Raman spectroscopy measurements of temperature fluctuations in turbulent natural gas-fueled piloted jet diffusion flames. Combust. Flame 110(1–2), 39–53 (1997)

    Article  Google Scholar 

  14. Merci, B., Naud, B., Roekaerts, D.: Flow and mixing fields for transported scalar PDF simulations of a piloted jet diffusion flame (Delft Flame III). Flow Turbulence Combust. 74(3), 239–272 (2005)

    Article  MATH  Google Scholar 

  15. Merci, B., Roekaerts, D., Naud, B.: Study of the performance of three micromixing models in transported scalar PDF simulations of a piloted jet diffusion flame. Combust. Flame 144(3), 476–493 (2006)

    Article  Google Scholar 

  16. Navarro-Martinez, S., Kronenburg, A., Mare, F.: Conditional moment closure for large eddy simulations. Flow turbulence Combust. 75(1), 245–274 (2005)

    Article  MATH  Google Scholar 

  17. Nooren, P., Versluis, M., Van der Meer, T., Barlow, R., Frank, J.: Raman–Rayleigh-LIF measurements of temperature and species concentrations in the Delft piloted turbulent jet diffusion flame. Appl. Phys. B Lasers Opt. 71(1), 95–111 (2000)

    Article  Google Scholar 

  18. Nooren, P., Wouters, H., Peeters, T., Roekaerts, D., Maas, U., Schmidt, D.: Monte Carlo PDF modelling of a turbulent natural-gas diffusion flame. Combust. Theory Model. 1(1), 79–96 (1997)

    Article  MATH  Google Scholar 

  19. O´Brien, E., Jiang, T.: The conditional dissipation rate of an initially binary scalar in homogeneous turbulence. Phys. Fluids A Fluid Dyn. 3, 3121 (1991)

    Article  MATH  Google Scholar 

  20. Peeters, T., Stroomer, P., De Vries, J., Roekaerts, D., Hoogendoorn, C.: Comparative experimental and numerical investigation of a piloted turbulent natural-gas diffusion flame. In: Proceedings of the Combustion Institute, pp. 1241–1241 (1994)

  21. Pierce, C., Moin, P.: A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar. Phys. Fluids 10, 3041–3044 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Roekaerts, D., Merci, B., Naud, B.: Comparison of transported scalar PDF and velocity-scalar PDF approaches to ’Delft flame III’. C. R. Méc. 334(8–9), 507–516 (2006)

    Article  Google Scholar 

  23. Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C., Jr., Lissianski, V.V., Qin, Z.: Gri-mech 3.0 web-site. http://www.me.berkeley.edu/gri_mech/. Accessed 28 August 2011

  24. Stroomer, P.: Turbulence and OH Structures in Flames. Ph.D. thesis, Delft University of Technology (1995)

  25. Stroomer, P., De Vries, J., van der Meer, T.: Effects of small-and large-scale structures in a piloted jet diffusion flame. Flow Turbulence Combust. 62(1), 53–68 (1999)

    Article  Google Scholar 

  26. Triantafyllidis, A., Mastorakos, E.: Implementation Issues of the Conditional Moment Closure Model in Large Eddy Simulations. Flow Turbulence Combust. 84, 481–512 (2010)

    Article  MATH  Google Scholar 

  27. Triantafyllidis, A., Mastorakos, E., Eggels, R.: Large Eddy Simulations of forced ignition of a non-premixed bluff-body methane flame with Conditional Moment Closure. Combust. Flame 156(12), 2328–2345 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Ayache.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayache, S., Mastorakos, E. Conditional Moment Closure/Large Eddy Simulation of the Delft-III Natural Gas Non-premixed Jet Flame. Flow Turbulence Combust 88, 207–231 (2012). https://doi.org/10.1007/s10494-011-9368-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-011-9368-6

Keywords

Navigation