DNS of Fractal-Generated Turbulence


An innovative approach which combines high order compact schemes, Immersed Boundary Method and an efficient domain decomposition method is used to perform high fidelity Direct Numerical Simulations (DNS) of four spatially evolving turbulent flows, one generated by a regular grid and three generated by fractal square grids. The main results which we have been able to obtain from these simulations are the following: the vorticity field appears more clustered when generated by fractal square grids compared to a regular grid; fractal square grids generate higher vorticities and turbulence intensities than a regular grid; the flow holds clear geometrical imprints of the fractal grids far downstream, a property which could be used in the future for flow design, management and passive control; the DNS obtained with fractal grids confirmed the existence of two turbulent regions, one where the turbulence progressively amplifies closer to the grid (the production region) followed by one where the turbulence decays; the energy spectra of fluctuating turbulent velocities at various locations in the production region of the flow provide some information on how the turbulence is generated at the smallest scales first near the grid where the smallest wakes are dominant, followed by progressively smaller turbulent frequencies further downstream where progressively larger wakes interact.

This is a preview of subscription content, log in to check access.


  1. 1.

    Bachelor, G.K.: The Theory of Homogeneous Turbulence. Cambridge Univ. Press (1953)

  2. 2.

    Chester, S., Meneveau, C., Parlange, M.B.: Modeling turbulent flow over fractal trees with renormalized numerical simulation. J. Comput. Phys. 225(1), 427–448 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Coffey, C.J., Hunt, G.R., Seoud, R.E., Vassilicos, J.C.: Mixing effectiveness of fractal grids for inline static mixers. In: Proof of Concept Report for the Attention of Imperial Innovations. http://www3.imperial.ac.uk/tmfc/papers/poc (2007)

  4. 4.

    Hurst, D., Vassilicos, J.C.: Scalings and decay of fractal-generated turbulence. Phys. Fluids 19, 035103 (2007)

    Article  Google Scholar 

  5. 5.

    Ishihara, T., Gotoh, T., Kaneda, Y.: Study of high Reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech. 41, 165–180, (2009)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Laizet, S., Lamballais, E.: High-order compact schemes for incompressible flows: a simple and efficient method with the quasi-spectral accuracy. J. Comput. Phys. 228(16), 5989–6015 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  7. 7.

    Laizet, S., Lamballais, E., Vassilicos, J.C.: A numerical strategy to combine high-order schemes, complex geometry and parallel computing for high resolution dns of fractal generated turbulence. Comput. Fluids 39(3), 471–484 (2010)

    Article  Google Scholar 

  8. 8.

    Laizet, S., Li, N.: Incompact3d, a powerful tool to tackle turbulence problems with up to (105) computational cores. Int. J. Numer. Methods Fluids. doi:10.1002/fld.248010.1002/fld.2480 (2011)

  9. 9.

    Laizet, S., Vassilicos, J.C.: Direct numerical simulation of fractal-generated turbulence. In: Proc. DLES-7. Trieste (2008)

  10. 10.

    Laizet, S., Vassilicos, J.C.: Direct numerical simulation of turbulent flows generated by regular and fractal grids using an immersed boundary method. In: Proc. TSFP 6. Seoul (2009)

  11. 11.

    Laizet, S., Vassilicos, J.C.: Multiscale generation of turbulence. J. Multiscale Modelling 1, 177–196 (2009)

    Article  Google Scholar 

  12. 12.

    Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Lorenz, E.N.: The interaction between a mean flow and random disturbances. Tellus 5(3), 238–250 (1953)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Mazellier, N., Vassilicos, J.C.: Turbulence without Richardson–Kolmogorov cascade. Phys. Fluids 22, 075101 (2010)

    Article  Google Scholar 

  15. 15.

    Mazzi, B., Vassilicos, J.C.: Fractal-generated turbulence. J. Fluid Mech. 502, 65–87 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Mohamed, M.S., LaRue, J.C.: The decay power law in grid-generated turbulence. J. Fluid Mech. 219, 195–214 (1990)

    Article  Google Scholar 

  17. 17.

    Nagata, K., Suzuki, H., Sakai, H., Hayase, Y., Kubo, T.: Direct numerical simulation of turbulence characteristics generated by fractal grids. Int. Rev. Phys. 5, 400–409 (2008)

    Google Scholar 

  18. 18.

    Nagata, K., Suzuki, H., Sakai, H., Hayase, Y., Kubo, T.: Direct numerical simulation of turbulent mixing in grid-generated turbulence. Phys. Scr. 132, 014054 (2008)

    Article  Google Scholar 

  19. 19.

    Parnaudeau, P., Carlier, J., Heitz, D., Lamballais, E.: Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3,900. Phys. Fluids 20, 085101 (2008)

    Article  Google Scholar 

  20. 20.

    Parnaudeau, P., Lamballais, E., Heitz, D., Silvestrini, J.H.: Combination of the immersed boundary method with compact schemes for DNS of flows in complex geometry. In: Proc. DLES-5. Munich (2003)

  21. 21.

    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  22. 22.

    Seoud, R.E., Vassilicos, J.C.: Dissipation and decay of fractal-generated turbulence. Phys. Fluids 19, 105108 (2007)

    Article  Google Scholar 

  23. 23.

    Stresing, R., Peinke, J., Seoud, R.E., Vassilicos, J.C.: Defining a new class of turbulent flows. Phys. Rev. Lett. 104(19), 194501 (2010)

    Article  Google Scholar 

  24. 24.

    Townsend, A.A.: The Structure of Turbulent Shear Flows. Cambridge Univ. Press (1956)

Download references

Author information



Corresponding author

Correspondence to Sylvain Laizet.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Laizet, S., Vassilicos, J.C. DNS of Fractal-Generated Turbulence. Flow Turbulence Combust 87, 673–705 (2011). https://doi.org/10.1007/s10494-011-9351-2

Download citation


  • Turbulence
  • Direct numerical simulation
  • Immersed boundary method
  • Vortex dynamics