Advertisement

Flow, Turbulence and Combustion

, Volume 87, Issue 4, pp 673–705 | Cite as

DNS of Fractal-Generated Turbulence

  • Sylvain Laizet
  • John Christos Vassilicos
Article

Abstract

An innovative approach which combines high order compact schemes, Immersed Boundary Method and an efficient domain decomposition method is used to perform high fidelity Direct Numerical Simulations (DNS) of four spatially evolving turbulent flows, one generated by a regular grid and three generated by fractal square grids. The main results which we have been able to obtain from these simulations are the following: the vorticity field appears more clustered when generated by fractal square grids compared to a regular grid; fractal square grids generate higher vorticities and turbulence intensities than a regular grid; the flow holds clear geometrical imprints of the fractal grids far downstream, a property which could be used in the future for flow design, management and passive control; the DNS obtained with fractal grids confirmed the existence of two turbulent regions, one where the turbulence progressively amplifies closer to the grid (the production region) followed by one where the turbulence decays; the energy spectra of fluctuating turbulent velocities at various locations in the production region of the flow provide some information on how the turbulence is generated at the smallest scales first near the grid where the smallest wakes are dominant, followed by progressively smaller turbulent frequencies further downstream where progressively larger wakes interact.

Keywords

Turbulence Direct numerical simulation Immersed boundary method Vortex dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bachelor, G.K.: The Theory of Homogeneous Turbulence. Cambridge Univ. Press (1953)Google Scholar
  2. 2.
    Chester, S., Meneveau, C., Parlange, M.B.: Modeling turbulent flow over fractal trees with renormalized numerical simulation. J. Comput. Phys. 225(1), 427–448 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Coffey, C.J., Hunt, G.R., Seoud, R.E., Vassilicos, J.C.: Mixing effectiveness of fractal grids for inline static mixers. In: Proof of Concept Report for the Attention of Imperial Innovations. http://www3.imperial.ac.uk/tmfc/papers/poc (2007)
  4. 4.
    Hurst, D., Vassilicos, J.C.: Scalings and decay of fractal-generated turbulence. Phys. Fluids 19, 035103 (2007)CrossRefGoogle Scholar
  5. 5.
    Ishihara, T., Gotoh, T., Kaneda, Y.: Study of high Reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech. 41, 165–180, (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Laizet, S., Lamballais, E.: High-order compact schemes for incompressible flows: a simple and efficient method with the quasi-spectral accuracy. J. Comput. Phys. 228(16), 5989–6015 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Laizet, S., Lamballais, E., Vassilicos, J.C.: A numerical strategy to combine high-order schemes, complex geometry and parallel computing for high resolution dns of fractal generated turbulence. Comput. Fluids 39(3), 471–484 (2010)CrossRefGoogle Scholar
  8. 8.
    Laizet, S., Li, N.: Incompact3d, a powerful tool to tackle turbulence problems with up to (105) computational cores. Int. J. Numer. Methods Fluids. doi:10.1002/fld.248010.1002/fld.2480 (2011)Google Scholar
  9. 9.
    Laizet, S., Vassilicos, J.C.: Direct numerical simulation of fractal-generated turbulence. In: Proc. DLES-7. Trieste (2008)Google Scholar
  10. 10.
    Laizet, S., Vassilicos, J.C.: Direct numerical simulation of turbulent flows generated by regular and fractal grids using an immersed boundary method. In: Proc. TSFP 6. Seoul (2009)Google Scholar
  11. 11.
    Laizet, S., Vassilicos, J.C.: Multiscale generation of turbulence. J. Multiscale Modelling 1, 177–196 (2009)CrossRefGoogle Scholar
  12. 12.
    Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Lorenz, E.N.: The interaction between a mean flow and random disturbances. Tellus 5(3), 238–250 (1953)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mazellier, N., Vassilicos, J.C.: Turbulence without Richardson–Kolmogorov cascade. Phys. Fluids 22, 075101 (2010)CrossRefGoogle Scholar
  15. 15.
    Mazzi, B., Vassilicos, J.C.: Fractal-generated turbulence. J. Fluid Mech. 502, 65–87 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Mohamed, M.S., LaRue, J.C.: The decay power law in grid-generated turbulence. J. Fluid Mech. 219, 195–214 (1990)CrossRefGoogle Scholar
  17. 17.
    Nagata, K., Suzuki, H., Sakai, H., Hayase, Y., Kubo, T.: Direct numerical simulation of turbulence characteristics generated by fractal grids. Int. Rev. Phys. 5, 400–409 (2008)Google Scholar
  18. 18.
    Nagata, K., Suzuki, H., Sakai, H., Hayase, Y., Kubo, T.: Direct numerical simulation of turbulent mixing in grid-generated turbulence. Phys. Scr. 132, 014054 (2008)CrossRefGoogle Scholar
  19. 19.
    Parnaudeau, P., Carlier, J., Heitz, D., Lamballais, E.: Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3,900. Phys. Fluids 20, 085101 (2008)CrossRefGoogle Scholar
  20. 20.
    Parnaudeau, P., Lamballais, E., Heitz, D., Silvestrini, J.H.: Combination of the immersed boundary method with compact schemes for DNS of flows in complex geometry. In: Proc. DLES-5. Munich (2003)Google Scholar
  21. 21.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes. Cambridge University Press, Cambridge (1992)Google Scholar
  22. 22.
    Seoud, R.E., Vassilicos, J.C.: Dissipation and decay of fractal-generated turbulence. Phys. Fluids 19, 105108 (2007)CrossRefGoogle Scholar
  23. 23.
    Stresing, R., Peinke, J., Seoud, R.E., Vassilicos, J.C.: Defining a new class of turbulent flows. Phys. Rev. Lett. 104(19), 194501 (2010)CrossRefGoogle Scholar
  24. 24.
    Townsend, A.A.: The Structure of Turbulent Shear Flows. Cambridge Univ. Press (1956)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of AeronauticsImperial College LondonLondonUK

Personalised recommendations