Skip to main content
Log in

Self-Turbulent Flame Speeds

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

This paper reports an experimental investigation of premixed propane and methane-air flames propagating freely in tubes 1.5 m long and with diameters ranging from 26 to 141 mm. The thermo-acoustic instability was eliminated by means of a novel acoustic absorber placed at the closed end of the tube. We first remark that the flame can adopt different shapes either quasi-axisymmetric and normal to the mean direction of propagation, or inclined with a larger propagation speed because of the increase in flame surface area. The minima of the propagation speeds, corresponding to non-tilted flame propagation, are then analyzed using analytical models for the self-turbulent flame propagation. The concept of a cut-off wavelength appears to be relevant to explain the different behaviors observed on the rich side of methane-air and propane-air flames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mallard, E.E., Le Chatelier, H.: Recherches expérimentales et théoriques sur la combustion des mélanges gazeux explosifs. Ann. Mines Paris, Series 8(4): 274–377 (1883)

    Google Scholar 

  2. Clavin, P., Williams, F.A.: Theory of premixed-flame propagation in large-scale turbulence. J. Fluid Mech. 90(3), 589–604 (1979)

    Article  MATH  Google Scholar 

  3. Lipatnikov, A.N., Chomiak, J.: Turbulent flame speed and thickness: phenomenology, evaluation, and application in multi-dimensional simulations. Pror. Energy Combust. Sci. 28(1), 1–74 (2002)

    Article  Google Scholar 

  4. Savarianandama, V.R., Lawn, C.J.: Burning velocity of premixed turbulent flames in the weakly wrinkled regime. Combust. Flame 146(1–2), 1–18 (2006)

    Article  Google Scholar 

  5. Darrieus, G.: Propagation d’un front de flamme. Unpublished work presented at La Technique Moderne (1938), and at Le Congrès de Mécanique Appliquée (1945) (1938)

  6. Landau, L.: On the theory of slow combustion. Acta Physicochimica URSS 19, 77–85 (1944)

    Google Scholar 

  7. Guénoche, H., Jouy, M.: Changes in the shape of flames propagating in tubes. In: The Combustion Institute (ed.), IVth International Symposium on Combustion, pp. 403-407 (1952)

  8. Cambray, P., Joulin, G.: On a scaling law for coarsening cells of premixed flames: an approach to fractalization. Combust. Sci. Technol. 161, 139–164 (2000)

    Article  Google Scholar 

  9. Bychkov, V.: Importance of the Darrieus–Landau instability for strongly corrugated turbulent flames. Phys. Rev. E 68(6), art. 066304 (2003)

    Article  MathSciNet  Google Scholar 

  10. Akkerman, V., Bychkov, V., Eriksson, L.E.: Numerical study of turbulent flame velocity. Combust. Flame 151(4), 452–471 (2007)

    Article  Google Scholar 

  11. Filtayev, S.A., Driscoll, J.F., Carter, C.D., Donbar, J.M.: Measured properties of turbulent premixed flames for model assessment, including burning velocities, stretch rates, and surface densities. Combust. Flame 141, 1–21 (2005)

    Article  Google Scholar 

  12. Travnikov, O.Y., Bychkov, V.V., Liberman, M.A.: Numerical studies of flames in wide tubes: stability limits of curved stationary flames. Phys. Rev. E 61(1), 468–474 (2000)

    Article  Google Scholar 

  13. Liberman, M.A., Ivanov, M.F., Peil, O.E., Valiev, D.M., Eriksson, L.-E.: Numerical studies of curved stationary flames in wide tubes. Combust. Theory Model. 7(4), 653–676 (2003)

    Article  MATH  Google Scholar 

  14. Akkerman, V., Bychkov, V.: Turbulent flame and the Darrieus–Landau instability in a three-dimensional flow. Combust. Theory Model. 7(4), 767–794 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Akkerman, V., Bychkov, V.: Velocity of weakly turbulent flames of finite thickness. Combust. Theory Model. 9(2), 323–351 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Denet, B., Bychkov, V.: Low vorticity and small gas expansion in premixed flames. Combust. Sci. Technol. 177(8), 1543–1566 (2005)

    Article  Google Scholar 

  17. Gostintsev, Y.A., Istratov, A.G., Shulenin, Y.V.: Self-similar propagation of a free turbulent flame in mixed gas mixtures. Combust. Explos. Shock Waves 24(5), 563–569 (1988)

    Article  Google Scholar 

  18. Bradley, D., Cresswell, T.M., Puttock, J.S.: Flame acceleration due to flame-induced instabilities in large-scale explosions. Combust. Flame 124(4), 551–559 (2001)

    Article  Google Scholar 

  19. Coward, H.F., Hartwell, F.J.: Studies in the mechanism of flame movement. Part I, the uniform movement of flame in mixtures of methane and air, in relation to tube diameter. J. Chem. Soc. 277, 1996–2004 (1932)

    Article  Google Scholar 

  20. Searby, G.: Acoustic instability in premixed flames. Combust. Sci. Technol. 81, 221–231 (1992)

    Article  Google Scholar 

  21. Searby, G., Rochwerger, D.: A parametric acoustic instability in premixed flames. J. Fluid Mech. 231, 529–543 (1991)

    Article  MATH  Google Scholar 

  22. Denet, B.: Stationary solutions and Neumann boundary conditions in the Sivashinsky equation. Phys. Rev. E 74, 036303 (2006)

    Article  Google Scholar 

  23. Joulin, G., Denet, B., El-Rabii, H.: Potential-flow models for channelled two-dimensional premixed flames around near-circular obstacles. Phys. Rev. E 81(1), 016314 (2010)

    Article  Google Scholar 

  24. Bychkov, V., Kleev, A.: The nonlinear equation for curved flames applied to the problem of flames in cylindrical tubes. Phys. Fluids 11(7), 1890–1895 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bychkov, V., Liberman, M.A.: Dynamics and stability of premixed flames. Phys. Rep. 325, 115–237 (2000)

    Article  MathSciNet  Google Scholar 

  26. Blinnikov, S.I., Sasorov, P.V.: Landau–Darrieus instability and the fractal dimension of flame fronts. Phys. Rev. E 53(5), 53 (1996)

    Article  Google Scholar 

  27. Bosschaart, K.J., De Goey, L.P.H.: The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method. Combust. Flame 136, 264–269 (2004)

    Article  Google Scholar 

  28. Zeldovich, Y.B., Istratov, A.G., Kidin, N.I., Librovich, V.B.: Flame propagation in tubes hydrodynamics and stability. Combust. Sci. Technol. 24(1–2), 1–13 (1980)

    Article  Google Scholar 

  29. Searby, G., Quinard, J.: Direct and indirect measurements of Markstein numbers of premixed flames. Combust. Flame 82(3–4), 298–311 (1990)

    Article  Google Scholar 

  30. Davis, S.G., Quinard, J., Searby, G.: Markstein numbers in counterflow, methane- and propane-air flames: a computational study. Combust. Flame 130, 123–136 (2002)

    Article  Google Scholar 

  31. Pelcé, P., Clavin, P.: Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flames. J. Fluid Mech. 124, 219–237 (1982)

    Article  MATH  Google Scholar 

  32. Quinard, J., Searby, G., Boyer, L.: Stability limits and critical size of structures in premixed flames. Prog. Astronaut. Aeronaut. 95, 129–141 (1985)

    Google Scholar 

  33. Quinard, J.: Limites de stabilité et structures cellulaires dans les flammes de prémélange. Ph.D. thesis, Université de Provence, Marseille (1984)

  34. Clavin, P., Garcia, P.: The influence of the temperature dependence of diffusivities on the dynamics of flame fronts. Journal de Mécanique Théorique et Appliquée 2(2), 245–263 (1983)

    MathSciNet  MATH  Google Scholar 

  35. Morley, C.: Gaseq a chemical equilibrium program for windows (2005). http://www.gaseq.co.uk/

  36. Bradley, D., Gaskell, P.H., Gu, X.J.: Burning velocities, (m)arkstein lengths, and flame quenching for spherical methane-air flames: a computational study. Combust. Flame 104(1–2), 176–198 (1996)

    Article  Google Scholar 

  37. Bradley, D., Hicks, R.A., Lawes, M., Sheppard, C.G.W., Woolley, R.: The measurement of laminar burning velocities and Markstein numbers for iso-octane and iso-octane–n-heptane—air mixtures at elevated temperatures and pressures in an explosion bomb. Combust. Flame 115: 126–144 (1998)

    Article  Google Scholar 

  38. Gu, X.J., Haq, M.Z., Lawes, M., Woolley, R.: Laminar burning velocity and Markstein lengths of methane–air mixtures. Combust. Flame 121(1–2), 41–58 (2000)

    Article  Google Scholar 

  39. Sharpe, G.J.: Effect of thermal expansion on the linear stability of planar premixed flames for a simple chain-branching model: the high activation energy asymptotic limit. Combust. Theory Model. 12(4), 717–738 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. White, F.M.: Fluid Mechanics, 3rd edn. Mc Graw Hill (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Quinard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quinard, J., Searby, G., Denet, B. et al. Self-Turbulent Flame Speeds. Flow Turbulence Combust 89, 231–247 (2012). https://doi.org/10.1007/s10494-011-9350-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-011-9350-3

Keywords

Navigation