Skip to main content
Log in

Flow Structure of Swirling Turbulent Propane Flames

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Flow structure of premixed propane–air swirling jet flames at various combustion regimes was studied experimentally by stereo PIV, CH* chemiluminescence imaging, and pressure probe. For the non-swirling conditions, a nonlinear feedback mechanism of the flame front interaction with ring-like vortices, developing in the jet shear layer, was found to play important role in the stabilisation of the premixed lifted flame. For the studied swirl rates (S = 0.41, 0.7, and 1.0) the determined domain of stable combustion can be divided into three main groups of flame types: attached flames, quasi-tubular flames, and lifted flames. These regimes were studied in details for the case of S = 1.0, and the difference in the flow structure of the vortex breakdown is described. For the quasi-tubular flames an increase of flow precessing above the recirculation zone was observed when increased the stoichiometric coefficient from 0.7 to 1.4. This precessing motion was supposed to be responsible for the observed increase of acoustic noise generation and could drive the transition from the quasi-tubular to the lifted flame regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseenko, S.V., Kuibin, P.A., Okulov, V.L.: Theory of Concentrated Vortices: An Introduction. Springer, New York (2007a)

    MATH  Google Scholar 

  2. Alekseenko, S.V., Bilsky, A.V., Dulin, V.M., Markovich, D.M.: Experimental study of an impinging jet with different swirl rates. Int. J. Heat Fluid Flow 28, 1340–1359 (2007b)

    Article  Google Scholar 

  3. Alekseenko, S.V., Dulin, V.M., Kozorezov, Yu.S., Markovich, D.M.: Effect of axisymmetric forcing on the structure of a swirling turbulent jet. Int. J. Heat Fluid Flow 29, 1699–1715 (2008)

    Article  Google Scholar 

  4. Anacleto, P.M., Fernandes, E.C., Heitor, M.V., Shtork, S.I.: Swirl flow structure and flame characteristics in a model lean premixed combustor. Combust. Sci. Technol. 175, 1369–1388 (2003)

    Article  Google Scholar 

  5. Baillot, F., Demare, D.: Responses of a lifted non-premixed flame to acoustic forcing. Part2. Combust. Sci. Technol. 179, 905–932 (2007)

    Article  Google Scholar 

  6. Billant, P., Chomaz, J.-M., Huerre, P.: Experimental study of vortex breakdown in swirling jets. J. Fluid Mech. 376, 183–219 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bollinger, L.M., Williams, D.T.: Experiments on stability of Bunsen-burner flames for turbulent flow. NACA technical note No 1234 (1947)

  8. Broze, G., Hussain, F.: Transitions to chaos in a forced jet: intermittency, tangent bifurcations and hysteresis. J. Fluid Mech. 311, 37–71 (1996)

    Article  MathSciNet  Google Scholar 

  9. Brucker, Ch., Althaus, W.: Study of vortex breakdown by particle tracking velocimetry (PTV) Part I: bubble-type vortex breakdown. Exp. Fluids 13, 339–349 (1992)

    Article  Google Scholar 

  10. Brucker, Ch.: Study of vortex breakdown by particle tracking velocimetry (PTV) Part 2: spiral-type vortex breakdown. Exp. Fluids 14, 133–139 (1993)

    Article  MathSciNet  Google Scholar 

  11. Burgess, C.P., Lawn, C.J.: The premixture model of turbulent burning to describe lifted jet flames. Combust. Flame 119, 95–108 (1999)

    Article  Google Scholar 

  12. Cala, C.E., Fernandes, E.C., Heitor, M.V., Shtork, S.I.: Coherent structures in unsteady swirling jet flow. Exp. Fluids 40, 267–276 (2006)

    Article  Google Scholar 

  13. Cheng, R.K.: Low Swirl Combustion in The Gas Turbine Handbook. DOE, Washington, DC (2006)

    Google Scholar 

  14. Clark, T.P.: Studies of OH, CO, CH, and C2 radiation from laminar and turbulent propane–air and ethylene–air flames. NACA technical note No 4266 (1958)

  15. Coudert, S.J.M., Schon, J.-P.: Back-projection algorithm with misalignment corrections for 2D3C stereoscopic PIV. Meas. Sci. Technol. 12, 1371–1381 (2001)

    Article  Google Scholar 

  16. Duwig, C., Fuchs, L.: Large eddy simulation of vortex breakdown/flame interaction. Phys. Fluids 19, 075103 (2007)

    Article  Google Scholar 

  17. Fernandes, E.C., Heitor, M.V., Shtork, S.I.: An analysis of unsteady highly turbulent swirling flow in a model vortex combustor. Exp. Fluids 40, 177–187 (2005)

    Article  Google Scholar 

  18. Ferraris, S.A., Wen, J.X.: Large eddy simulation of a lifted turbulent jet flame. Combust. Flame 150, 320–339 (2007)

    Article  Google Scholar 

  19. Guezennec, Y.G., Brodkey, R.S., Trigui, N., Kent, J.C.: Algorithms for fully automated three-dimensional particle tracking velocimetry. Exp. Fluids 17, 209–219 (1994)

    Article  Google Scholar 

  20. Gupta, A.K., Lilley, D.G., Syred, N.: Swirl flows. Abacus, Kent (1984)

    Google Scholar 

  21. Kalghatgi, G.T.: Lift-off heights and visible lengths of vertical turbulent jet diffusion flames in still air. Combust. Sci. Technol. 41, 17–29 (1984)

    Article  Google Scholar 

  22. Konle, M., Sattelmayer, T.: Interaction of heat release and vortex breakdown during flame flashback driven by combustion induced vortex breakdown. Exp. Fluids 47, 627–635 (2009)

    Article  Google Scholar 

  23. Konle, M., Kiesewetter, F., Sattelmayer, T.: Simultaneous high repetition rate PIV–LIF-measurements of CIVB driven flashback. Exp. Fluids 44, 529–538 (2008)

    Article  Google Scholar 

  24. Legrand, M., Nogueira, J., Lecuona, A., Nauri, S., Rodríguez, P.A.: Atmospheric low swirl burner flow characterization with Stereo-PIV. Exp. Fluids 48, 901–913 (2009)

    Article  Google Scholar 

  25. Lewis, B., von Elbe, G.: Stability and structure of burner flames. J. Chem. Phys. 11, 75–97 (1943)

    Article  Google Scholar 

  26. Liang, H., Maxworthy, T.: An experimental investigation of swirling jets. J. Fluid Mech. 525, 115–159 (2005)

    Article  MATH  Google Scholar 

  27. Liang, H., Maxworthy, T.: Experimental investigations of a swirling jet in both stationary and rotating surroundings. Exp. Fluids 45, 283–293 (2008)

    Article  Google Scholar 

  28. Mourtazin, D., Cohen, J.: The effect of buoyancy on vortex breakdown in a swirling jet. J. Fluid Mech. 571, 177–189 (2007)

    Article  MATH  Google Scholar 

  29. Plessing, T., Terhoeven, P., Peters, N.: An experimental and numerical study of a laminar triple flame. Combust. Flame 115, 335–353 (1998)

    Article  Google Scholar 

  30. Ruith, M. R. , Chen, P., Meiburg, E., Maxworthy, T.: Three-dimensional vortex breakdown in swirling jets and wakes: direct numerical simulation. J. Fluid Mech. 486, 331–378 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schneider, C., Dreizler, A., Janicka, J.: Fluid dynamical analysis of atmospheric reacting and isothermal swirling flows. Flow, Turbul. Combust. 74, 103–127 (2005)

    Article  MATH  Google Scholar 

  32. Stella, A., Guj, G., Kompenhans, J., Raffel, M., Richard, H.: Application of particle image velocimetry to combusting flows: design considerations and uncertainty assessment. Exp. Fluids 30, 167–180 (2001)

    Article  Google Scholar 

  33. Stohr, M., Sadanandan, R., Meier, W.: Experimental study of unsteady flame structures of an oscillating swirl flame in a gas turbine model combustor. Proc. Combust. Inst. 32, 2925–2932 (2009)

    Article  Google Scholar 

  34. Su, L. K. , Sun, O. S. , Mungal, M. G. : Experimental investigation of stabilization mechanisms in turbulent, lifted jet diffusion flames. Combust. Flame 144, 494–512 (2006)

    Article  Google Scholar 

  35. Tanahashi, M., Murakami, S., Choi, G. M. , Fukuchi, Y., Miyauchi, T.: Simultaneous CH–OH PLIF and stereoscopic PIV measurements of turbulent premixed flames. Proc. Combust. Inst. 30, 1665–1672 (2005)

    Article  Google Scholar 

  36. Takehara, K., Etoh, T.: A study on particle identification in PTV. Particle mask correlation method. J. Vis. 1, 313–323 (1998)

    Article  Google Scholar 

  37. Vanquickenborne, L., Tigglen, A.: The stabilization mechanism of lifted diffusion flames. Combust. Flame 10, 59–69 (1966)

    Article  Google Scholar 

  38. Westerweel, J., Scarano, F.: Universal outlier detection for PIV data. Exp. Fluids 39, 1096–1100 (2005)

    Article  Google Scholar 

  39. Willert, C., Jarius, M.: Planar flow field measurements in atmospheric and pressurized combustion chambers. Exp. Fluids 33, 931–939 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitriy M. Markovich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alekseenko, S.V., Dulin, V.M., Kozorezov, Y.S. et al. Flow Structure of Swirling Turbulent Propane Flames. Flow Turbulence Combust 87, 569–595 (2011). https://doi.org/10.1007/s10494-011-9340-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-011-9340-5

Keywords

Navigation