Skip to main content

Development of an Intermittency Equation for the Modeling of the Supersonic/Hypersonic Boundary Layer Flow Transition

Abstract

An intermittency transport equation is developed in this study to model the laminar-turbulence boundary layer transition at supersonic and hypersonic conditions. The model takes into account the effects of different instability modes associated with the variations in Mach numbers. The model equation is based on the intermittency factor γ concept and couples with the well-known SST kω eddy-viscosity model in the solution procedures. The particular features of the present model approach are that: (1) the fluctuating kinetic energy k includes the non-turbulent, as well as turbulent fluctuations; (2) the proposed transport equation for the intermittency factor γ triggers the transition onset through a source term; (3) through the introduction of a new length scale normal to wall, the present model employs the local variables only avoiding the use of the integral parameters, like the boundary layer thickness δ, which are often cost-ineffective with the modern CFD methods; (4) in the fully turbulent region, the model retreats to SST model. This model is validated with a number of available experiments on boundary layer transition including the incompressible, supersonic and hypersonic flows past flat plates, straight/flared cones at zero incidences, etc. It is demonstrated that the present model can be successfully applied to the engineering calculations of a variety of aerodynamic flow transition with a reasonably wide range of Mach numbers.

This is a preview of subscription content, access via your institution.

References

  1. White, F.M.: Viscous Fluid Flow, 2nd ed. McGraw-Hill, New York, Chap 1 and 7 (1991)

    Google Scholar 

  2. Mack, L.M.: Boundary-layer linear stability theory. AGARD Rept.709 (1986)

  3. Stock, H.W.: e(N) Transition prediction in three-dimensional boundary layers on inclined prolate spheroids. AIAA J. 44, 108–118 (2006)

    Article  Google Scholar 

  4. Menter, F.R., Langtry, R., Völker, S.: Transition modelling for general purpose CFD codes. Flow Turbul. Combust., 77, 277–303 (2006b)

    MATH  Article  Google Scholar 

  5. Wilcox, D.: Turbulence Modelling for CFD. La Canada, CA, DCW Industries, Chap 3 (1992)

  6. Savill, A.M.: One-point closures applied to transition. In: Hallbäck, M. (ed.) Turbulence and Transition Modeling, pp. 233–268. Kluwer (1996)

  7. Lardeau, S., Leschziner, M.A., Li, N.: Modelling bypass transition with low-Reynolds-number nonlinear eddy-viscosity closure. Flow Turbul. Combust. 73, 49–76 (2004)

    MATH  Article  Google Scholar 

  8. Westin, K.J.A., Henkes, R.A.W.M.: Application of turbulence models to bypass transition. J. Fluids Eng. 119, 859–866 (1997)

    Article  Google Scholar 

  9. Hadžić, I., Hanjalić, K.: Separation-induced transition to turbulence, second-moment closure modeling. Flow Turbul. Combust. 63, 153–173 (2000)

    MATH  Article  Google Scholar 

  10. Dhawan, S., Narasimha, R.: Some properties of boundary-layer flow during transition from laminar to turbulent motion. J. Fluid M. 3, 414–436 (1958)

    Google Scholar 

  11. Libby, P.A.: On the prediction of intermittent turbulent flows. J. Fluid Mech. 68, 273–295 (1975)

    Article  Google Scholar 

  12. Steelant, J., Dick, E.: Modelling of bypass transition with conditioned Navier–Stokes equations coupled to an intermittency transport equation. Int. J. Numer. Meth. Fluids 23, 193–220 (1996)

    MATH  Article  Google Scholar 

  13. Steelant, J., Dick, E.: Modelling of laminar-turbulent transition for high freestream turbulence. J. Fluids Eng. 123, 22–30 (2001)

    Article  Google Scholar 

  14. Rodi, W.: A review of experimental data of uniform density free turbulent boundary layers. In: Launder, B.E. (ed.) Studies in Convection, vol. 1, pp. 79–165. Academic Press, San Diego (1975)

    Google Scholar 

  15. Byggstoyl, S., Köllmann, W.: Closure model for intermittent turbulent flows. Int. J. Heat Mass Trans. 24, 1811–1823 (1981)

    Article  Google Scholar 

  16. Cho, J.R., Chung, M.K.: A k–εγ equation turbulence model. J. Fluid Mech. 237, 301–322 (1992)

    MATH  Article  Google Scholar 

  17. Simon, F.F., Stephens, C.A.: Modeling of the heat transfer in bypass transitional boundary-layer flows. NASA Technical Paper 3170 (1991)

  18. Warren, E.S., Hassan, H.A.: Transition closure model for predicting transition onset. J. Aircraft 35, 769–775 (1998)

    Article  Google Scholar 

  19. McDaniel, R.D., Nance, R.P., Hassan, H.A.: Transition onset prediction for high-speed flow. J Spacecr. Rockets 37, 304–309 (2000)

    Article  Google Scholar 

  20. Papp, J.L., Kenzakowski, D.C., Dash, S.M.: Extensions of a rapid engineering approach to modelling hypersonic laminar to turbulent transitional flows. AIAA Paper 2005-0892 (2005)

  21. Schulte, V., Hodson, H.P.: Prediction of the becalmed region for LP turbine profile design. J. Turbomach. (Trans. ASME) 120, 839–845 (1998)

    Article  Google Scholar 

  22. Menter, F.R., Esch, T., Kubacki, S.: Transition modelling based on local variables. In: Rodi, W., Fueyo, N. (eds.) 5th International Symposium on Turbulence Modelling and Measurements. Elsevier (2002)

  23. Menter, F.R., Langtry, R., Likki, S.R., Suzen, Y.B., Huang, P.G., Völker, S.: A correlation based transition model using local variables part 1—model formulation. J. Turbomach. (Trans. ASME) 128, 413–422 (2006)

    Article  Google Scholar 

  24. Langtry, R., Menter, F.R., Likki, S.R., Suzen, Y.B., Huang, P.G., Völker, S.: A correlation based transition model using local variables part 2—test cases and industrial applications. J. Turbomach. (Trans. ASME) 128, 423–434 (2006)

    Article  Google Scholar 

  25. Suzen, Y.B., Huang, P.G., Hultgren, L.S., Ashpis, D.E.: Predictions of separated and transitional boundary layers under low-pressure turbine airfoil conditions using an intermittency transport equation. J. Turbomach. (Trans. ASME) 125, 455–464 (2003)

    Article  Google Scholar 

  26. Pecnik, R., Sanz, W., Gehrer, A., Woisetschläger, J.: Transition modeling using two different intermittency transport equations. Flow Turbul. Combust. 70, 299–323 (2003)

    MATH  Article  Google Scholar 

  27. Suzen, Y.B., Huang, P.G.: An intermittency transport equation for modelling flow transition. AIAA paper 2000-0287 (2000)

  28. Lodefier, K., Merci, B., De Langhe, C., Dick, E.: Intermittency based RANS bypass transition Modelling. Prog. Comput. Fluid Dyn. 6, 68–78 (2006)

    MATH  Article  Google Scholar 

  29. Mayle, R.E., Schulz, A.: The path to predicting bypass transition. J. Turbomach. (Trans. ASME) 119, 405–411 (1997)

    Google Scholar 

  30. Volino, R.J., Simon, T.W.: Boundary layer transition under high free-stream turbulence and strong acceleration conditions: part 2—turbulent transport results. J. Heat Transfer 119, 427–432 (1997)

    Article  Google Scholar 

  31. Leib, S.J., Wundrow, D.W., Goldstein, M.E.: Effect of free-stream turbulence and other vortical disturbances on a laminar boundary layer. J. Fluid Mech. 380, 169–203 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  32. Walters, D.K., Leylek, J.H.: A new model for boundary layer transition using a single-point RANS approach. J. Turbomach. (Trans. ASME), 126, 193–202 (2004)

    Article  Google Scholar 

  33. Volino, R.J.: Separated flow transition under simulated low-pressure turbine airfoil conditions—part 1, mean flow and turbulence statistics. J. Turbomach. (Trans. ASME), 124, 645–655 (2002)

    Article  Google Scholar 

  34. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994)

    Article  Google Scholar 

  35. Arnal, D., Casalis, G.: Laminar-turbulent transition prediction in three-dimensional flows. Prog. Aerosp. Sci. 36, 173–191 (2000)

    Article  Google Scholar 

  36. Wilcox, D.: Turbulence Modelling for CFD. La Canada, CA, DCW Industries, Chap 3 (1992)

  37. Medic, G., Durbin, P.A.: Toward improved prediction of heat transfer on turbine blades. J. Turbomach. (Trans. ASME) 124, 187–192 (2002)

    Article  Google Scholar 

  38. Walker, G.J.: Transition flow an axial turbomachine blading. AIAA J. 27, 595–602 (1989)

    Article  Google Scholar 

  39. Savill, A.M.: New strategies in modelling by-pass transition. In: Launder, B.E., Sandham, N.D. (eds.) Closure Strategies for Turbulent and Transitional Flows, pp. 492–521. Cambridge University Press (2002)

  40. Mayle, R.E.: The role of laminar-turbulent transition in gas turbine engines. J. Turbomach. (Trans. ASME) 113, 509–537 (1991)

    Article  Google Scholar 

  41. Sarkar, S., Erlebacher, G., Hussaini, M.Y.: The analysis and modelling of dilatational terms in compressible turbulence. J. Fluid Mech. 227, 473–493 (1991)

    MATH  Article  Google Scholar 

  42. Sarkar, S.: The stabilizing effect of compressibility in turbulent shear flow. J. Fluid Mech. 282, 163–186 (1995)

    MATH  Article  Google Scholar 

  43. The MathWorks, Natick, M.A.: Using MATLAB version 5, revised for MATLAB 5.1 edition (1997)

  44. Schlichting, H.: Boundary Layer Theory, 7th ed. McGraw-Hill, New York, Chap 15 (1979)

    MATH  Google Scholar 

  45. Harris, J.E.: Numerical solution of flow equations for laminar, transitional, and turbulent compressible boundary layers for planar or axisymmetric flows. NASA-TR-R-368 (1971)

  46. Liou, M.S.: A Sequel to AUSM: AUSM+. J. Comput. Phys. 129, 364–382 (1996)

    MathSciNet  MATH  Article  Google Scholar 

  47. Schubauer, G.B., Klebanoff, P.S.: Contribution on the mechanics of boundary layer transition. NACA TN 3489 (1956)

  48. Mateer, G.G., Monson, D.J., Menter, F.R.: Skin-friction measurements and calculations on a lifting airfoil. AIAA J. 34, 231–236 (1996)

    Article  Google Scholar 

  49. Chen, F.J., Malik, M.R., Beckwith, I.E.: Comparison of boundary-layer transition on a cone and flat plate at Mach 3.5. AIAA J. 27, 687–693 (1989)

    Article  Google Scholar 

  50. Lachowicz, J.T., Chokani, N., Wilkinson, S.P.: Boundary-layer stability measurements in a hypersonic quiet tunnel. AIAA J. 34, 2496–2500 (1996)

    Article  Google Scholar 

  51. Kendall, J.M.: Wind tunnel experiments relating to supersonic and hypersonic boundary-layer transition. AIAA J. 13, 290–299 (1975)

    Article  Google Scholar 

  52. Coles, D.: Measurements of turbulent friction on a smooth flat plate in supersonic flow. J. Aero. Sei. 21, 433–446 (1954)

    Google Scholar 

  53. Deem, R.E., Murphy, J.S.: Flat plate boundary layer transition at hypersonic speeds. AIM Paper 65-128 (1965)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Fu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, L., Fu, S. Development of an Intermittency Equation for the Modeling of the Supersonic/Hypersonic Boundary Layer Flow Transition. Flow Turbulence Combust 87, 165–187 (2011). https://doi.org/10.1007/s10494-011-9336-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-011-9336-1

Keywords

  • Supersonic boundary layer
  • Transition
  • Turbulence model
  • Intermittency factor