Flow, Turbulence and Combustion

, Volume 87, Issue 2–3, pp 377–406 | Cite as

Flame Stabilization Mechanisms in Lifted Flames

  • Salvador Navarro-Martinez
  • Andreas Kronenburg


Flame stabilization and the mechanisms that govern the dynamics at the flame base of lifted flames have been subject to numerous studies in recent years. A combined Large Eddy Simulation-Conditional Moment Closure (LES-CMC) approach has been successful in predicting flame ignition and stabilization by auto-ignition, but accurate modelling of the competition between turbulent quenching and laminar and turbulent flame propagation at the anchor point had not been demonstrated. This paper will consolidate LES-CMC results by analysing a wide range of lifted flame geometries with different prevailing stabilization mechanisms. The simulations allow a clear distinction of these mechanisms. It is corroborated that LES-CMC accurately predicts the competition between turbulence and chemistry during the auto-ignition process, the dynamics of turbulent flame propagation can be captured, however, the dynamics of the extinction process are not approximated well under certain conditions. The averaging process inherent in the CMC methods does not allow for an instant response of the transported conditionally averaged reactive species to the changes in the flow conditions and any response of the scalars will therefore be delayed. The dimensionality of the CMC implementation affects the solution and higher dimensionality does no necessarily improve results. Stationary or quasi-stationary conditions, however, can be well predicted for all flame configurations.


Turbulent reacting flows Partial premixing Lifted flames LES 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cao, S., Echekki, T.: Auto-ignition in nonhomogeneous mixtures: conditional statistics and implications for modeling. Combust. Flame 151, 120–141 (2007)CrossRefGoogle Scholar
  2. 2.
    Mastorakos, E., Baritaud, T.A., Poinsot, T.J.: Numerical simulations of autoignition in turbulent mixing flows. Combust. Flame 109, 198–223 (1997)CrossRefGoogle Scholar
  3. 3.
    Cabra, R., Myrvold, T., Chen, J.Y., Dibble, R.W., Karpetis, A.N., Barlow, R.S.: Simultaneous laser Raman–Rayleigh-LIF measurements and numerical modeling results of a lifted turbulent H2/N2 jet flame in a vitiated co-flow. Proc. Combust. Inst. 29, 1881–1888 (2002)CrossRefGoogle Scholar
  4. 4.
    Masri, A.R., Cao, R., Pope, S.B., Goldin, G.M.: PDF calculations of turbulent lifted flames of H2/N2 fuel issuing into a vitiated co-flow. Combust. Theory Model. 8, 1–2 (2004)CrossRefGoogle Scholar
  5. 5.
    Cao, R.P., Pope, S.B., Masri, A.R.: Turbulent lifted flames in a vitiated coflow investigated using joint PDF calculations. Combust. Flame 142(4), 438–453 (2005)CrossRefGoogle Scholar
  6. 6.
    Devaud, C.B., Bray, K.N.C.: Assessment of the applicability of conditional moment closure to a lifted turbulent flame: first order model. Combust. Flame 132, 102–114 (2003)CrossRefGoogle Scholar
  7. 7.
    Kim, I.S., Mastorakos, E.: Simulations of turbulent lifted jet flames with two dimensional conditional moment closure. Proc. Combust. Inst. 30, 911–918 (2005)CrossRefGoogle Scholar
  8. 8.
    Gkagkas, K., Lindstedt, R.P.: Transported PDF modelling with detailed chemistry of pre and auto-ignition in CH4/air mixtures. Proc. Combust. Inst. 31, 1559–1586 (2007)CrossRefGoogle Scholar
  9. 9.
    Gordon, R.L., Masri, A.R., Pope, S.B., Goldin, G.M.: A numerical study of auto-ignition in turbulent lifted flames issuing into a vitiated co-flow. Combust. Theory Model. 11(3), 351–376 (2007)zbMATHCrossRefGoogle Scholar
  10. 10.
    Cabra, R., Chen, J.-Y., Dibble, R.W., Karpetis, A.N., Barlow, R.S.: Lifted methane-air jet flames in vitiated coflow. Combust. Flame 143, 491–506 (2005)CrossRefGoogle Scholar
  11. 11.
    Tap, F.A., Veynante, D.: Simulations of flame lift-off height on a diesel jet using a generalized flame surface density modeling approach. Proc. Combust. Inst. 30, 919–926 (2005)CrossRefGoogle Scholar
  12. 12.
    Ma, C.Y., Mahmud, T., Fairweather, M., Hampartsoumian, E., Gaskell, P.H.: Lifted methane-air jet flames in vitiated coflow. Combust. Flame 128, 60–73 (2002)CrossRefGoogle Scholar
  13. 13.
    Mura, A., Demoulin, F.-X.: Lagrangian intermittent modelling of turbulent lifted flames. Combust. Theory Model. 11(2), 227–257 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Jones, W.P., Navarro-Martinez, S.: Large Eddy simulation of auto-ignition with a subgrid probability density function. Combust. Flame 150, 170–187 (2007)CrossRefGoogle Scholar
  15. 15.
    Goldin, G.M.: Evaluation of Les Subgrid Reaction Models in a Lifted Flame. 2005-555, AIAA (2005)Google Scholar
  16. 16.
    Ferraris, S.A., Wen, J.X.: Large Eddy simulation of a lifted turbulent jet flame. Combust. Flame 150, 320–329 (2007)CrossRefGoogle Scholar
  17. 17.
    Domingo, P., Vervisch, L., Bray, K.N.C.: Partially premixed flamelets in LES of nonpremixed turbulent combustion. Combust. Theory Model. 6, 529–551 (2002)CrossRefGoogle Scholar
  18. 18.
    Domingo, P., Vervisch, L., Veynante, D.: Large-eddy simulation of a lifted methane flame in a vitiated coflow. Combust. Flame 152, 415–432 (2008)CrossRefGoogle Scholar
  19. 19.
    Duwig, C., Fuchs, L.: Large Eddy simulation of a H2/N2 lifted flame in a vitiated co-flow. Combust. Sci. Technol. 180, 453–480 (2008)CrossRefGoogle Scholar
  20. 20.
    Swaminathan, N., Bilger, R.W.: Analyses of conditional moment closure for turbulent premixed flames. Combust. Theory Model. 5(2), 241–260 (2001)zbMATHCrossRefGoogle Scholar
  21. 21.
    Kronenburg, A.: Double conditioning of reactive scalar transport equations in turbulent non-premixed flames. Phys. Fluids 16(7), 2640–2648 (2004)CrossRefGoogle Scholar
  22. 22.
    Ihme, M., See, Y.C.: Prediction of autoignition in a lifted methane/air flame using an unsteady flamelet/progress variable model. Combust. Flame 157(10), 1850–1862 (2010)CrossRefGoogle Scholar
  23. 23.
    Cabra, R.: Turbulent Jet Flames into a Vitiated Co-flow. Cr-2003212887, NASA Report (2004)Google Scholar
  24. 24.
    Gordon, R.L., Starner, S.H., Masri, A.R., Bilger, R.W.: Further characterisation of lifted hydrogen and methane flames issuing into a vitiated co-flow. In: Proceedings of the 5th Asia-Pacific Conference on Combustion. University of Adelaide (2005)Google Scholar
  25. 25.
    Markides, C.N., Mastorakos, E.: An experimental study of hydrogen auto-ignition in a turbulent co-flow of heated air. Proc. Combust. Inst. 30, 883–891 (2005)CrossRefGoogle Scholar
  26. 26.
    Leung, T., Wierzba, I.: The effect of co-flow stream velocity on turbulent non-premixed jet flame stability. Proc. Combust. Inst. 32(2), 1671–1678 (2009)CrossRefGoogle Scholar
  27. 27.
    Markides, C.N., De Paola, G., Mastorakos, E.: Measurements and simulations of mixing and auto-ignition of an n-heptane plume in a turbulent flow of heated air. Exp. Therm. Fluid Sci. 31, 393–401 (2007)CrossRefGoogle Scholar
  28. 28.
    Navarro-Martinez, S., Kronenburg, A., di Mare, F.: Conditional moment closure for large eddy simulations. Flow Turbulence Combust. 75, 245–274 (2005)zbMATHCrossRefGoogle Scholar
  29. 29.
    Navarro-Martinez, S., Kronenburg, A.: LES-CMC simulations of a lifted methane flame. Proc. Combust. Inst. 32(1), 1509–1516 (2009)CrossRefGoogle Scholar
  30. 30.
    Patwardhan, S.S., Santanu De, Lakshmisha, K.N., Raghunandan, B.N.: CMC simulations of lifted turbulent jet flame in a vitiated coflow. Proc. Combust. Inst. 32(2), 1705–1712 (2009)CrossRefGoogle Scholar
  31. 31.
    Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91, 99–164 (1963)CrossRefGoogle Scholar
  32. 32.
    Piomelli, U., Liu, J.: Large Eddy Simulation of rotating channel flows using a localized dynamic model. Phys. Fluids 7(4), 893–848 (1995)CrossRefGoogle Scholar
  33. 33.
    Pitsch, H., Steiner, H.: Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D). Phys. Fluids 12(10), 2541–2554 (2000)CrossRefGoogle Scholar
  34. 34.
    Branley, N., Jones, W.P.: Large Eddy simulation of a turbulent non-premixed flame. Combust. Flame 127, 1914–1934 (2001)CrossRefGoogle Scholar
  35. 35.
    Klimenko, A.Y., Bilger, R.W.: Conditional moment closure for turbulent combustion. Pror. Energy Combust. Sci. 25, 595–688 (1999)CrossRefGoogle Scholar
  36. 36.
    Bushe, K., Steiner, H.: Conditional moment closure for large eddy simulation of non-premixed turbulent reacting flows. Phys. Fluids A 11, 1896–1906 (1999)zbMATHCrossRefGoogle Scholar
  37. 37.
    Colucci, P.J., Jaberi, F.A., Givi, P., Pope, S.B.: Filtered density function for large eddy simulation of turbulent reacting flows. Phys. Fluids 10, 499–515 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Triantafyllidis, A., Mastorakos, E.: Implementation issues of the conditional moment closure model in Large Eddy simulations. Flow Turbulence Combust. 84(3), 481–512 (2009)CrossRefGoogle Scholar
  39. 39.
    Lee, C.W., Mastorakos, E.: Transported scalar pdf calculations of autoignition of a hydrogen jet in a heated turbulent co-flow. Combust. Theory Model. 12, 1153–1178 (2008)zbMATHCrossRefGoogle Scholar
  40. 40.
    Wu, Z., Starner, S.H., Bilger, R.W., Lift-off heights of turbulent H2/N2 jet flames in a vitiated coflow. In: Honnery, D. (ed.) Proceedings of the 2003 Australian Symposium on Combustion. Monash University (2005)Google Scholar
  41. 41.
    Markides, C.N., Mastorakos, E.: Flame propagation following the autoignition of axisymmetric hydrogen, acetylene, and normal-heptane plumes in turbulent coflows of hot air. J. Eng. Gas Turbine Power-Trans. ASME 130(1), 011502-1–011502-9 (2008)Google Scholar
  42. 42.
    Jones, W.P., di Mare, F., Marquis, A.J.: LES-BOFFIN: Users Guide. Technical Memorandum, Imperial College, London (2002)Google Scholar
  43. 43.
    Van Leer, B.: Towards the ultimate conservative difference scheme.ii. monotonicity and conservation combined in a second order scheme. J. Comput. Phys. 14, 361–370 (1974)CrossRefGoogle Scholar
  44. 44.
    Kempf, A., Linstedt, R.P., Janicka, J.: Large-Eddy simulation of a bluff-body stabilized nonpremixed flame. Combust. Flame 144, 170–189 (2006)CrossRefGoogle Scholar
  45. 45.
    Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 10, 1246–1248 (1998)Google Scholar
  46. 46.
    di Mare, L., Klein, M., Jones, W.P., Janicka, J.: Synthetic turbulence inflow conditions for large eddy simulation. Phys. Fluids 18, 025107 (2006)CrossRefGoogle Scholar
  47. 47.
    Jones, W.P., Navarro-Martinez, S., Rohl, O.: Large Eddy simulation of hydrogen auto-ignition with a probability density function method. Proc. Combust. Inst. 31, 1765–1771 (2007)CrossRefGoogle Scholar
  48. 48.
    Yetter, R.A., Dryer, F.L., Rabitz, H.: A comprehensive reaction mechanism for carbon monoxide/hydrogen/oxygen kinetics. Combust. Sci. Technol. 79, 97–128 (1991)CrossRefGoogle Scholar
  49. 49.
    Sung, C.J., Law, C.K., Chen, J.Y.: Augmented reduced mechanism for no emission in methane oxidation. Combust. Flame 125, 906–919 (2001)CrossRefGoogle Scholar
  50. 50.
    Navarro-Martinez, S., Kronenburg, A.: LES-CMC simulations of a turbulent bluff-body flame. Proc. Combust. Inst. 31, 1721–1728 (2007)CrossRefGoogle Scholar
  51. 51.
    Triantafyllidis, A., Mastorakos, E., Eggels, R.L.G.M.: Large Eddy simulation of forced ignition of a non-premixed bluff-body methane flame with conditional moment closure. Combust. Flame 156(12), 2328–2345 (2009)CrossRefGoogle Scholar
  52. 52.
    Stanković, I., Triantafyllidis, A., Mastorakos, E., Lacor, C., Merci, B.: Simulation of hydrogen auto-ignition in a turbulent co-flow of heated air with LES and CMC approach. Flow Turbulence Combust. doi: 10.1007/s10494-010-9277-0 (2010)Google Scholar
  53. 53.
    Jones, W.P., Lindstedt, R.P.: Global reaction schemes for hydrocarbon combustion. Combust. Flame 73, 233–249 (1988)CrossRefGoogle Scholar
  54. 54.
    Gordon, R.L., Masri, A.R., Bilger, R.W.: Simultaneous Imaging of Rayleigh Temperature, OHLIF and CH2O-LIF at the Base of Turbulent LiftedMethane Flames in a Vitiated Coflow. Poster contribution, TNF8 Workshop, Heidelberg, Germany, 3–5 August 2006Google Scholar
  55. 55.
    Gordon, R.L., Masri, A.R., Pope, S.B., Goldin, G.M.: Transport budgets in turbulent lifted flames of methane auto igniting in a vitiated co-flow. Combust. Flame 151, 495–511 (2007)CrossRefGoogle Scholar
  56. 56.
    Cant, R.S., Mastorakos, E.: An Introduction to Turbulent Reacting Flows. Imperial College Press (2008)Google Scholar
  57. 57.
    Lawn, C.J.: Lifted flames on fuel jets in co-flowing air. Pror. Energy Combust. Sci. 31, 1–30 (2009)CrossRefGoogle Scholar
  58. 58.
    Muñiz L., Mungal, M.G.: Instantaneous flame-stabilization velocities in lifted-jet diffusion flames. Combust. Flame 111(1), 16–31 (1997)CrossRefGoogle Scholar
  59. 59.
    Schefer, R.W., Namazian, M., Kelly, J.: Structural characteristics of lifted turbulent-jet flames. Proc. Combust. Inst. 22(1), 833–842 (1988)Google Scholar
  60. 60.
    Wright, Y.M., DePaola, G., Boulouchos, K., Mastorakos, E.: Simulations of spray autoignition and flame establishment with two-dimensional cmc. Combust. Flame 143, 402–419 (2005)CrossRefGoogle Scholar
  61. 61.
    Jones, W.P., Navarro-Martinez, S.: Study of hydrogen auto-ignition in a turbulent air co-flow using a Large Eddy simulation approach. Comput. Fluids 37, 802–808 (2008)zbMATHCrossRefGoogle Scholar
  62. 62.
    Cheng, T.S., Wehrmeyer, J.A., Pitz, R.W.: Conditional analysis of lifted hydrogen jet diffusion flame experimental data and comparison to laminar flame solutions. Combust. Flame 150, 340–354 (2007)CrossRefGoogle Scholar
  63. 63.
    Cleary, M.J., Kent, J.H.: Modelling of species in hood fires by conditional moment closure. Combust. Flame 143, 357–368 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Imperial College LondonLondonUK
  2. 2.Institut für Technische VerbrennungUniversity of StuttgartStuttgartGermany

Personalised recommendations