Skip to main content
Log in

Convergence to a Model in Sparse-Lagrangian FDF Simulations

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

This work investigates the problem of distinguishing modelling assumptions and numerical errors in sparse-Lagrangian FDF (Filtered Density Function) methods. A new interpretation of sparse modelling with Curl’s mixing, which does not require an additional observation scale nor filtering, is given. The diffusion effects induced by mixing, which were previously interpreted as numerical errors, are now treated as modelling instruments. This ability of controlling numerical errors with the purpose of modelling physical quantities is one of the advantages of Lagrangian particle methods in turbulent reacting flows. The development of stochastic methods which use Lagrangian particles has been ongoing for many years, although the exact interpretation of the nature of such particles varies within the literature. Here we briefly discuss these interpretations and introduce the new term—“Pope particles”—to unify terminology used for the particle simulations of turbulent reacting flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pope, S.B.: Computations of turbulent combustion: progress and challenges. In: Proc. Combust. Inst, vol. 23, pp. 591–612 (1990)

  2. Gao, F., O’Brien, E.E.: A large-eddy simulation scheme for turbulent reacting flows. Phys. Fluids A 5, 1282–1284 (1993)

    Article  MATH  Google Scholar 

  3. Colucci, P.J., Jaberi, F.A., Givi, P., Pope, S.B.: Filtered density function for large eddy simulation of turbulent reacting flows. Phys. Fluids 10, 499–515 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Jaberi, F.A., Colucci, P.J., James, S., Givi, P., Pope, S.B.: Filtered mass density function for large-eddy simulation of turbulent reacting flows. J. Fluid Mech. 401, 85–121 (1999)

    Article  MATH  Google Scholar 

  5. Pope, S.B.: Pdf methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119–192 (1985)

    Article  MathSciNet  Google Scholar 

  6. Rogallo, R.S., Moin, P.: Numerical simulation of turbulent flows. Annu. Rev. Fluid Mech. 16, 99–137 (1984)

    Article  Google Scholar 

  7. Pope, S.B.: Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6, 35 (2004)

    Article  Google Scholar 

  8. Klimenko, A.Y.: Lagrangian particles with mixing. I. Simulating scalar transport. Phys. Fluids 21, 065101 (2009)

    Article  Google Scholar 

  9. Klimenko, A.: Why does one need to be taught engineering logic? In: International Conference on Engineering Education (ICEE), Portugal, paper 574 (2007)

  10. Cleary, M.J., Klimenko, A.Y.: A generalised multiple mapping conditioning approach for turbulent combustion. Flow Turbul. Combust. 82, 477–491 (2009)

    Article  MATH  Google Scholar 

  11. Cleary, M.J., Klimenko, A.Y., Janicka, J., Pfitzner, M.: A sparse-lagrangian multiple mapping conditioning model for turbulent diffusion flames. Proc. Combust. Inst. 32, 1499–1507 (2009)

    Article  Google Scholar 

  12. Meyers, J., Geurts, B., Sagaut, P.: A computational error-assessment of central finite-volume discretizations in large-eddy simulation using a Smagorinsky model. J. Comput. Phys. 227, 156–173 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Geurts, B.: LES quality assessment. In: Ninth International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames (TNF-9), p. 10 (2008)

  14. Klimenko, A.Y.: Lagrangian particles with mixing. II. Sparse-lagrangian methods in application for turbulent reacting flows. Phys. Fluids 21, 065102 (2009)

    Article  Google Scholar 

  15. Dreeben, T.D., Pope, S.B.: Probability density function and Reynolds-stress modeling of near-wall turbulent flows. Phys. Fluids 9, 154–163 (1997)

    Article  MathSciNet  Google Scholar 

  16. Anand, M.S., Pope, S.B., Mongia, H.C.: A PDF method for turbulent recirculating flows. In: Lecture Notes in Engineering, vol. 40, pp. 672–693. Springer (1989)

  17. Kuznetsov, V.R., Sabelnikov, V.A.: Turbulence and Combustion. Hemisphere, New York (1990)

    MATH  Google Scholar 

  18. Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  19. Klimenko, A.Y., Bilger, R.W.: Conditional moment closure for turbulent combustion. Prog. Energy Combust. Sci. 25, 595–687 (1999)

    Article  Google Scholar 

  20. Klimenko, A.Y., Pope, S.B.: A model for turbulent reactive flows based on multiple mapping conditioning. Phys. Fluids 15, 1907–1925 (2003)

    Article  MathSciNet  Google Scholar 

  21. Dopazo, C.: Recent developments in Pdf methods. In: Libby, P.A., Williams F.A. (eds.) Turbulent Reacting Flows, chap. 7, pp. 375–474. Academic, London (1994)

    Google Scholar 

  22. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  23. Fox, R.: Computational Models for Turbulent Reacting Flows. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  24. Heinz, S.: Statistical Mechanics of Turbulent Flows. Springer, Berlin (2003)

    Google Scholar 

  25. Pitsch, H.: Large-Eddy simulations of turbulent combustion. Annu. Rev. Fluid Mech. 38, 453–482 (2006)

    Article  MathSciNet  Google Scholar 

  26. Haworth, D.: Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci. 36, 168–259 (2010)

    Article  Google Scholar 

  27. Sawford, B.: Micro-mixing modelling of scalar fluctuations for plumes in homogeneous turbulence. Flow Turbul. Combust. 72, 133–160 (2004)

    Article  MATH  Google Scholar 

  28. Klimenko, A.: On simulating scalar transport by mixing between Lagrangian particles. Phys. Fluids 19, 031702 (2007)

    Article  Google Scholar 

  29. Raman, V., Pitsch, H., Fox, R.O.: Hybrid large-eddy simulation/lagrangian filtered-density-function approach for simulating turbulent combustion. Combust. Flame 143, 56–78 (2005)

    Article  Google Scholar 

  30. Curl, R.L.: Dispersed phase mixing. I. AIChE J. 9, 175 (1963)

    Article  Google Scholar 

  31. Janicka, J., Kolbe, W., Kollmann, W.: Closure of the transport equation for the probability density function of turbulent scalar fields. J. Non-Equilib. Thermodyn. 4, 47–66 (1977)

    Article  Google Scholar 

  32. Klimenko, A.Y.: Matching conditional moments in pdf modelling of non-premixed combustion. Combust. Flame 143, 369–385 (2005)

    Article  Google Scholar 

  33. Cook, A.W., Riley, J.J.: A subgrid model for equilibrium chemistry in turbulent flows. Phys. Fluids 6, 2868–2870 (1994)

    Article  Google Scholar 

  34. Jimenez, C., Ducros, F., Cuenot, B., Bedat, B.: A subgrid model for equilibrium chemistry in turbulent flows. Phys. Fluids 13, 1748–1754 (2001)

    Article  Google Scholar 

  35. Batchelor, G.K., Howells, I.D., Townsend, A.A.: Small-scale variation of convected quantities like temperature in turbulent fluid. Part 2: the case of large conductivity. J. Fluid Mech. 113, 134–139 (1959)

    Article  MathSciNet  Google Scholar 

  36. Wandel, A.P., Klimenko, A.Y.: Testing MMC mixing for Monte-Carlo PDF simulations. Phys. Fluids 17, 128105 (2005)

    Article  Google Scholar 

  37. Sreenivasan, K.R.: Possible effects of small-scale intermittency in turbulent reacting flows. Flow Turbul. Combust. 72, 115–131 (2004)

    Article  MATH  Google Scholar 

  38. Kronenburg, A., Cleary, M.J.: Multiple mapping conditioning for flames with partial premixing. Combust. Flame 155, 215–231 (2008)

    Article  Google Scholar 

  39. Barlow, R.S., Frank, J.: Effects of turbulence on species mass fractions in methane/air flames. In: Proc. Combust. Inst., vol. 27, pp. 1087–1095 (1998)

  40. Schneider, C., Dreizler, A., Janicka, J., Hassel, E.P.: Flow field measurements of stable and locally extinguishing hydrocarbon-fuelled jet flames. Combust. Flame 135, 185–190 (2003)

    Article  Google Scholar 

  41. Ge, Y., Cleary, M., Klimenko, A.: Sparse-lagrangian fdf simulations of sandia flame e with density coupling. Proc. Combust. Inst. 33, (2010). doi:10.1016/j.proci.2010.06.035

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Y. Klimenko.

Additional information

Article submitted for the Special Issue dedicated to S.B. Pope.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klimenko, A.Y., Cleary, M.J. Convergence to a Model in Sparse-Lagrangian FDF Simulations. Flow Turbulence Combust 85, 567–591 (2010). https://doi.org/10.1007/s10494-010-9301-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-010-9301-4

Keywords

Navigation