Skip to main content
Log in

Large Eddy Simulation of a Motored Single-Cylinder Piston Engine: Numerical Strategies and Validation

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

This paper describes a compressible Large Eddy Simulation (LES) used to investigate cyclic variations for nonreacting flow in an optical single cylinder engine setup. The simulated operating point is part of a large experimental database designed to validate LES for cycle-to-cycle prediction, and constitutes a first step towards the realization of fired operating points. The computational domain covers almost the whole experimental setup (intake and exhaust plenums, intake and exhaust ducts, cylinder) to account for acoustic phenomena. The assessment of the computation is performed in two regions of the domain: the intake and exhaust duct predictions are compared to the results of a Helmholtz solver and the experiment (pressure transducers and Particle Image Velocimetry (PIV)) while the in-cylinder dynamics are compared to PIV measurements. The ability of the developed methodology to capture the correct level of cycle-to-cycle variations is demonstrated considering in-cylinder pressure and velocity fields predictions. Cycle-to-cycle variations in velocity are highlighted and localized using a proper orthogonal decomposition analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baby, X., Dupont, A., Ahmed, A., Deslandes, W., Charnay, G., Michard, M.: A new methodology to analyse cycle-to-cycle aerodynamic variations. SAE Paper (2002-01-2837) (2002)

  2. Boileau, M., Staffelbach, G., Cuenot, B., Poinsot, T., Bérat, C.: LES of an ignition sequence in a gas turbine engine. Combust. Flame 154(1–2), 2–22 (2008)

    Article  Google Scholar 

  3. Borée, J., Maurel, S., Bazile, R.: Disruption of a compressed vortex. Phys. Fluids 14(7), 2543–2556 (2002)

    Article  Google Scholar 

  4. Celik, I., Klein, M., Freitag, M., Janicka, J.: Assessment measures for URANS/DES/LES: an overview with applications. J. Turbul. 7(48), 1–27 (2006)

    MathSciNet  Google Scholar 

  5. Celik, I., Yavuz, I., Smirnov, A.: Large eddy simulations of in-cylinder turbulence for internal combustion engines: a review. Int. J. Engine Res. 2(2), 119–148 (2001)

    Article  Google Scholar 

  6. Celik, I.B., Cehreli, Z.N., Yavuz, I.: Index of resolution quality for large eddy simulations. J. Fluids Eng. 127(5), 949–958 (2005)

    Article  Google Scholar 

  7. Celik, I.B., Yavuz, I.: An assessment of turbulence scales relevant to internal combustion engines. Internal Combustion Engine Division Spring Tech. Conf. 28(1), paper 97–ICE–5 (1997)

    Google Scholar 

  8. Cook, A.W., Cabot, W.H.: Hyperviscosity for shock-turbulence interactions. J. Comput. Phys. 203(2), 379–385 (2005)

    Article  MATH  Google Scholar 

  9. Dugue, V., Gauchet, N., Veynante, D.: Applicability of large eddy simulation to the fluid mechanics in a real engine configuration by means of an industrial code. SAE Paper (2006-01-1194) (2006)

  10. Eldredge, J.D., Bodony, D.J., Shoeybi, M.: Numerical investigation of the acoustic behavior of a multi-perforated liner. AIAA paper 2007-3683. In: 13th AIAA/CEAS Aeroacoustics Conference. Rome, 21–23 May 2007 (2007)

  11. Fogleman, M., Lumley, J., Rempfer, D., Haworth, D.: Application of the proper orthogonal decomposition to datasets of internal combustion engine flows. J. Turbul. 5, 023 (2004)

    Google Scholar 

  12. Forsythe, N., Müller, J.D.: Validation of a fluid-structure interaction model for a bileaflet mechanical heart valve. Int. J. Comput. Fluid Dyn. 22(13), 541–553 (2008)

    Article  MATH  Google Scholar 

  13. Fureby, C.: Towards the use of large eddy simulation in engineering. Prog. Aerosp. Sci. 44, 381–396 (2008)

    Article  Google Scholar 

  14. Goryntsev, D., Klein, M., Sadiki, A., Janicka, J.: Large eddy simulation of fuel-air mixing in a direct injection SI engine. In: 5th Symp. on Turb. and Shear Flow Phenomena, Munich, Germany (2007)

  15. Goryntsev, D., Sadiki, A., Klein, M., Janicka, J.: Large eddy simulation based analysis of the effects of cycle-to-cycle variations on air-fuel mixing in realistic DISI IC-engines. Proc. Combust. Inst. 32, 2759–2766 (2009)

    Article  Google Scholar 

  16. Gourdain, N., Gicquel, L., Montagnac, M., Vermorel, O., Gazaix, M., Staffelbach, G., García, M., Boussuge, J.F., Poinsot, T.: High performance parallel computing of flows in complex geometries—part 1: methods. Comput. Science and Discovery 015003(2), 26 pp. (2009)

    Google Scholar 

  17. Gourdain, N., Gicquel, L., Montagnac, M., Vermorel, O., Gazaix, M., Staffelbach, G., García, M., Boussuge, J.F., Poinsot, T.: High performance parallel computing of flows in complex geometries—part 2: applications. Comput. Science and Discovery 015004(2), 28 pp. (2009)

    Google Scholar 

  18. Hasse, C., Sohm, V., Durst, B.: Detached eddy simulation of cyclic large scale fluctuations in a simplified engine setup. Int. J. Heat Fluid Flow 30, 32–43 (2009)

    Article  Google Scholar 

  19. Hasse, C., Sohm, V., Durst, B.: Numerical investigation of cyclic variations in gasoline engines using a hybrid URANS/LES modeling approach. Comput. Fluids 39(1), 25–48 (2010)

    Article  Google Scholar 

  20. Haworth, D.: Large-eddy simulation of in-cylinder flows. Oil Gas Sci. Technol. 54(2), 175–185 (1999)

    Article  Google Scholar 

  21. Heywood, J.B.: Internal Combustion Engine Fundamentals. McGraw and Hill Series in Mechanical Engineering. McGraw-Hill, New-York (1988)

    Google Scholar 

  22. Klein, M.: An attempt to assess the quality of large eddy simulations in the context of implicit filtering. Flow, Turb. and Combustion 75(1–4), 131–147 (2005)

    Article  MATH  Google Scholar 

  23. Klein, M., Meyers, J., Geurts, B.: Assessment of les quality measures using the error landscape approach. In: S. Netherlands (ed.) Proc. of the Quality and Reliability in Large-Eddy Simulations, vol. 12, pp. 131–142. Springer-Verlag, Berlin (2008)

    Chapter  Google Scholar 

  24. Lacour, C., Pera, C., Enaux, B., Vermorel, O., Angelberger, C., Poinsot, T.: Exploring cyclic variability in a spark-ignition engine using experimental techniques, system simulation and large-eddy simulation. In: Proc. of the 4th European Combustion Meeting, Vienna, Austria (2009)

  25. Lax, P.D., Wendroff, B.: Difference schemes for hyperbolic equations with high order of accuracy. Commun. Pure Appl. Math. 17, 381–398 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lumley, J.L.: Stochastic Tools in Turbulence. Academic Press, New York (1970)

    MATH  Google Scholar 

  27. Maurel, S., Borée, J., Lumley, J.L.: Extended proper orthogonal decomposition: Application to jet/vortex interaction. Flow, Turb. and Combustion 67, 125–136 (2001)

    Article  MATH  Google Scholar 

  28. Mendez, S., Eldredge, J.: Acoustic modeling of perforated plates with bias flow for large-eddy simulations. J. Comput. Phys. 228(13), 4757–4772 (2009)

    Article  MATH  Google Scholar 

  29. Moin, P., Apte, S.V.: Large-eddy simulation of realistic gas turbine combustors. Am. Inst. Aeronaut. Astronaut. J. 44(4), 698–708 (2006)

    Google Scholar 

  30. Moureau, V., Barton, I., Angelberger, C., Poinsot, T.: Towards large eddy simulation in internal-combustion engines: simulation of a compressed tumble flow. SAE Paper (2004-01-1995) (2004)

  31. Moureau, V., Lartigue, G., Sommerer, Y., Angelberger, C., Colin, O., Poinsot, T.: Numerical methods for unsteady compressible multi-component reacting flows on fixed and moving grids. J. Comput. Phys. 202(2), 710–736 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Nicoud, F., Benoit, L., Sensiau, C.: Acoustic modes in combustors with complex impedances and multidimensional active flames. AIAA J. 45, 426–441 (2007)

    Article  Google Scholar 

  33. Ozdor, N., Dulger, M., Sher, E.: Cyclic variability in spark ignition engines. A literature survey. SAE Paper (950683) (1994)

  34. Patel, N., Menon, S.: Simulation of spray–turbulence–flame interactions in a lean direct injection combustor. Combust. Flame 153(1–2), 228–257 (2008)

    Article  Google Scholar 

  35. Poinsot, T., Lele, S.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101(1), 104–129 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  36. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 2nd edn. R.T. Edwards (2005)

  37. Richard, S., Colin, O., Vermorel, O., Benkenida, A., Angelberger, C., Veynante, D.: Towards large eddy simulation of combustion in spark ignition engines. Proc. Combust. Inst. 31(3059–3066) (2007)

    Google Scholar 

  38. Rudy, D.H., Strikwerda, J.C.: A non-reflecting outflow boundary condition for subsonic Navier Stokes calculations. J. Comput. Phys. 36, 55–70 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  39. Schmitt, P., Poinsot, T., Schuermans, B., Geigle, K.P.: Large-eddy simulation and experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high-pressure burner. J. Fluid Mech. 570, 17–46 (2007)

    Article  MATH  Google Scholar 

  40. Selle, L., Nicoud, F., Poinsot, T.: The actual impedance of non-reflecting boundary conditions: implications for the computation of resonators. AIAA J. 42(5), 958–964 (2004)

    Article  Google Scholar 

  41. Sirovich, L.: Turbulence and the dynamics of coherent structures. Q. Appl. Math. XLV(3), 561–590 (1987)

    MathSciNet  Google Scholar 

  42. Smagorinsky, J.: General circulation experiments with the primitive equations: 1. The basic experiment. Mon. Weather Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  43. Thobois, L., Lauvergne, R., Poinsot, T.: Using LES to investigate reacting flow physics in engine design process. SAE Paper (2007-01-0166) (2007)

  44. Toledo, M.S., Penven, L.L., Buffat, M., Cadiou, A., Padilla, J.: Large eddy simulation of the generation and breakdown of a tumbling flow. Int. J. Heat Fluid Flow 28, 113–126 (2007)

    Article  Google Scholar 

  45. Tran, N., Ducruix, S., Schuller, T.: Analysis and control of combustion instabilities by adaptive reflection coefficients. In: Proceedings of the 13th AIAA/CEAS Aeroacoustics Conference, AIAA Paper, Rome, vol. 3716, pp. 21–23 (2007)

  46. Vermorel, O., Richard, S., Colin, O., Angelberger, C., Benkenida, A., Veynante, D.: Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle LES. Combust. Flame 156, 1525–1541 (2009)

    Article  Google Scholar 

  47. Young, M.B.: Cyclic dispersion in the homogeneous charge spark-ignition engine. A literature survey. SAE Paper (810020) (1981)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Granet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enaux, B., Granet, V., Vermorel, O. et al. Large Eddy Simulation of a Motored Single-Cylinder Piston Engine: Numerical Strategies and Validation. Flow Turbulence Combust 86, 153–177 (2011). https://doi.org/10.1007/s10494-010-9299-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-010-9299-7

Keywords

Navigation