Skip to main content
Log in

Swirling and Impinging Effects in an Annular Nonpremixed Jet Flame

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The effects of swirl and downstream wall confinement on an annular nonpremixed flame were investigated using direct numerical simulation (DNS). Fully three-dimensional parallel DNS was performed employing high-order numerical methods and high-fidelity boundary conditions to solve governing equations for variable-density flow and finite-rate Arrhenius chemistry. Three swirl numbers have been examined: 0 (without swirl), 0.4 and 0.8, while the effects of downstream wall confinement have been examined for swirl numbers 0 and 0.4. Results have been presented in terms of instantaneous and time-averaged flow quantities, which have also been analysed using energy spectra and proper orthogonal decomposition (POD). Effects of swirl on the fluid dynamic behaviour of the annular nonpremixed flame were found to be significant. The fluid dynamic behaviour of the flame is greatly affected by the interaction between the geometrical recirculation zone (GRZ) near the jet nozzle exit due to the annular configuration, the central recirculation zone (CRZ) associated with swirl, the unsteady vortical structures in the jet column due to the shear instability, and the downstream wall confinement. Depending on the degree of swirl, the GRZ near the burner mouth and the CRZ may co-exist or one zone may be overwhelmed by another. At a moderate swirl number, the co-existence leads to a flame with strong reaction attached to the burner mouth; while at a high swirl number, the CRZ dominates over the GRZ. The precessing vortex core was observed to exist in the swirling flow fields. The Nusselt number distribution of the annular impinging flames differs from that of round impinging jets. The POD analysis revealed that wall effects on the flow field are mainly associated with the higher mode numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hübner, A.W., Tummers, M.J., Hanjalić, K., van der Meer, T.H.: Experiments on a rotating-pipe swirl burner. Exp. Therm. Fluid Sci. 27, 481–489 (2003)

    Article  Google Scholar 

  2. Masri, A.R., Pope, S.B., Dally, B.B.: Probability density function computations of a strongly swirling nonpremixed flame stabilized on a new burner. Proc. Combust. Inst. 28, 123–131 (2000)

    Article  Google Scholar 

  3. Masri, A.R., Kalt, P.A.M., Barlow, R.S.: The compositional structure of swirl-stabilised turbulent nonpremixed flames. Combust. Flame 137, 1–37 (2004)

    Article  Google Scholar 

  4. Jakirlić, S., Hanjalić, K., Tropea, C.: Modeling rotating and swirling turbulent flows: a perpetual challenge. AIAA J. 40, 1984–1996 (2002)

    Article  Google Scholar 

  5. Duwig, C., Fuchs, L.: Study of flame stabilization in a swirling combustor using a new flamelet formulation. Combust. Sci. Technol. 177, 1485–1510 (2005)

    Article  Google Scholar 

  6. Grinstein, F.F., Fureby, C.: LES studies of the flow in a swirl gas combustor. Proc. Combust. Inst. 30, 1791–1798 (2005)

    Article  Google Scholar 

  7. Sankaran, V., Menon, S.: LES of spray combustion in swirling flows. J. Turbul. 3, Art. No. 011 (2002)

  8. Selle, L., Benoit, L., Poinsot, T., Nicoud, F., Krebs, W.: Joint use of compressible large-eddy simulation and Helmholtz solvers for the analysis of rotating modes in an industrial swirled burner. Combust. Flame 145, 194–205 (2006)

    Article  Google Scholar 

  9. Stein, O., Kempf, A.M., Janicka, J.: LES of the Sydney swirl flame series: an initial investigation of the fluid dynamics. Combust. Sci. Technol. 179, 173–189 (2007)

    Article  Google Scholar 

  10. Kim, S.H., Pitsch, H.: Mixing characteristics and structure of a turbulent jet diffusion flame stabilized on a bluff-body. Phys. Fluids 18, 075103/1–13 (2006)

    Google Scholar 

  11. Patte-Rouland, B., Lalizel, G., Moreau, J., Rouland, E.: Flow analysis of an annular jet by particle image velocimetry and proper orthogonal decomposition. Meas. Sci. Technol. 12, 1404–1412 (2001)

    Article  Google Scholar 

  12. Vanoverberghe, K.P., van den Bulck, E.V., Tummers, M.J.: Confined annular swirling jet combustion. Combust. Sci. Technol. 175, 545–578 (2003)

    Article  Google Scholar 

  13. García-Villalba, M., Fröhlich, J.: LES of a free annular swirling jet—dependence of coherent structures on a pilot jet and the level of swirl. Int. J. Heat Fluid Flow 27, 911–923 (2006)

    Article  Google Scholar 

  14. García-Villalba, M., Fröhlich, J., Rodi, W.: Identification and analysis of coherent structures in the near field of a turbulent unconfined annular swirling jet using large eddy simulation. Phys. Fluids 18, 055103/1–17 (2006)

    Google Scholar 

  15. Al-Abdeli, Y.M., Masri, A.R.: Turbulent swirling natural gas flames: stability characteristics, unsteady behavior and vortex breakdown. Combust. Sci. Technol. 179, 207–225 (2007)

    Article  Google Scholar 

  16. Zhang, Y., Bray, K.N.C.: Characterization of impinging jet flames. Combust. Flame 116, 671–674 (1999)

    Article  Google Scholar 

  17. Jiang, X., Zhao, H., Luo, K.H.: Direct numerical simulation of a non-premixed impinging jet flame. ASME J. Heat Transfer 129, 951–957 (2007)

    Article  Google Scholar 

  18. Jiang, X., Luo, K.H.: Dynamics and structure of transitional buoyant jet diffusion flames with sidewall effects. Combust. Flame 133, 29–45 (2003)

    Article  Google Scholar 

  19. Jiang, X., Luo, K.H.: Mixing and entrainment of transitional non-circular buoyant reactive plumes. Flow Turbul. Combust. 67, 57–79 (2001)

    Article  MATH  Google Scholar 

  20. Poinsot, T.J., Lele, S.K.: Boundary-conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jiang, X., Siamas, G.A., Wrobel, L.C.: Analytical equilibrium swirling inflow conditions for computational fluid dynamics. AIAA J. 46, 1015–1018 (2008)

    Article  Google Scholar 

  22. Danaila, I., Boersma, B.J.: Direct numerical simulation of bifurcating jets. Phys. Fluids 12, 1255–1257 (2000)

    Article  MATH  Google Scholar 

  23. Uchiyama, T.: Three-dimensional vortex simulation of bubble dispersion in excited round jet. Chem. Eng. Sci. 59, 1403–1413 (2004)

    Article  Google Scholar 

  24. Jiang, X., Zhao, H., Luo, K.H.: Direct computation of perturbed impinging hot jets. Comput. Fluids 36, 259–272 (2007)

    Article  MATH  Google Scholar 

  25. Hussain, K.M.F., Zaman, K.B.M.Q.: The preferred mode of the axisymmetric jet. J. Fluid Mech. 110, 39–71 (1981)

    Article  Google Scholar 

  26. Lele, S.K.: Compact finite-difference schemes with spectral like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  27. Williamson, J.H.: Low-storage Runge-Kutta schemes. J. Comput. Phys. 35, 48–56 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  28. Syred, N.: A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Pror. Energy Combust. Sci. 32, 93–161 (2006)

    Article  Google Scholar 

  29. Al-Abdeli, Y.M., Masri, A.R.: Precession and recirculation in turbulent swirling isothermal jets. Combust. Sci. Technol. 176, 645–665 (2004)

    Article  Google Scholar 

  30. Sirovich, L.: Turbulence and the dynamics of coherent structures. 1. Coherent structures. Q. Appl. Math. 45, 561–571 (1987)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, X., Luo, K.H., de Goey, L.P.H. et al. Swirling and Impinging Effects in an Annular Nonpremixed Jet Flame. Flow Turbulence Combust 86, 63–88 (2011). https://doi.org/10.1007/s10494-010-9287-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-010-9287-y

Keywords

Navigation