Skip to main content
Log in

On the Transition from Deflagration to Detonation in Narrow Tubes

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The paper is an extension of our recent work on the deflagration-to-detonation transition in narrow channels over the transition in narrow circular tubes under more realistic point ignition conditions. The changes from channel to circular tube geometry and from planar to point ignition result in enhancement of the incipient acceleration of the flame and reduction of the predetonation time and distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Williams, F.A.: Combustion Theory, 2nd edn. Benjamin/Cummings, Menlo Park, CA (1985)

    Google Scholar 

  2. Zeldovich, Y.B., Barenblatt, G.I., Librovich, V.B., Makhviladze, G.M.: The Mathematical Theory of Combustion and Explosion. Plenum, New York (1985)

    Google Scholar 

  3. Nettleton, M.A.: Gaseous Detonation. Chapman and Hall, London (1987)

    Google Scholar 

  4. Shepherd, J.E., Lee, J.H.S.: On the transition from deflagration to detonation. In: Hussaini, M.Y., Kumar, A., Voigt, R.G. (eds.) Major Research Topics in Combustion, pp. 439–487. Springer-Verlag, New York (1992)

    Google Scholar 

  5. Oran, E.S., Gamezo, V.N.: Origins of deflagration-to-detonation transition in gas-phase combustion. Combust. Flame 148, 4–47 (2007)

    Article  Google Scholar 

  6. Lee, J.H.S.: The Detonation Phenomenon. Cambridge Univ. Press., New York (2008)

    Google Scholar 

  7. Brailovsky, I., Sivashinsky G.: Hydraulic resistance as a mechanism for deflagration-to-detonation transition. Combust. Flame 122, 492–499 (2000)

    Article  Google Scholar 

  8. Zeldovich, Y.B., Librovich, V.B., Makhviladze, G.M., Sivashinsky G.I.: On the development of detonation in a non-uniformly preheated gas. Astronaut. Acta 15, 313–321 (1970)

    Google Scholar 

  9. Lee, J.H.S., Knustautas, R., Yoshikawa, N.: Photochemical initiation of gaseous detonations. Acta Astronaut. 5, 971–982 (1978)

    Article  Google Scholar 

  10. Zeldovich, Y.B.: Regime classification of an exothermic reaction with nonuniform initial conditions. Combust. Flame 39, 211–214 (1980)

    Article  Google Scholar 

  11. Makhviladze, G.M., Rogatyh, D.I.: Nonuniformities in initial temperature and concentration as a cause of explosive reaction in combustible gases. Combust. Flame 87, 349–356 (1991)

    Article  Google Scholar 

  12. He, L., Clavin, P.: Critical conditions for detonation initiation in cold gaseous mixtures by non-uniform hot pockets of reactive gases. Proc. Combust. Inst. 24, 1861–1867 (1992)

    Google Scholar 

  13. Bdzil, J.B., Kapila, A.K.: Shock-to-detonation transition. Phys. Fluids A 4(2), 409–418 (1992)

    MathSciNet  ADS  Google Scholar 

  14. Khokhlov, A.M., Oran, E.S., Wheeler, J.C.: A theory of deflagration-to-detonation transition in unconfined flames. Combust. Flame 108, 503–517 (1997)

    Article  Google Scholar 

  15. Short, M.: On the critical conditions for initiation of a detonation in a nonuniformly preheated reactive fluid. SIAM J. Appl. Math. 57, 1242–1280 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bartenev, A.M., Gelfamd, B.E.: Spontaneous initiation of detonations. Progr. Energ. Combust. Sci.26, 29–55 (2000)

    Article  Google Scholar 

  17. Kapila, A.K., Schwendeman, D.W., Quirk, J.J., Hawa, T.: Mechanisms of detonation formation due to a temperature gradient. Combust. Theory Model. 6, 553–594 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Kagan, L., Sivashinsky G.: The transition from deflagration to detonation in thin channels. Combust. Flame 134, 389–397 (2003)

    Article  Google Scholar 

  19. Kagan, L.: On the transition from deflagration to detonation in narrow channels. Math. Model. Nat. Phenom. 2(2), 40–55 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  20. Wu, M.-h., Burke, M.P., Son, S.F., Yetter, R.A.: Flame acceleration and the transition to detonation of stoichiometric ethylene/oxygen in microscale tubes. Proc. Combust. Inst. 31, 2429–2436 (2007)

    Article  Google Scholar 

  21. Kagan, L., Ronney, P., Sivashinsky, G.: Activation energy effect on flame propagation in large-scale vortical flows. Combust. Theory Model. 6, 479–485 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Ott, J.D., Oran, E.S., Anderson, J.D.: The Interaction of a Flame and its Self-induced Boundary Layer. NASA-Report, CR-1999-209401 (1999)

  23. Akkerman, V., Bychkov, V., Petchenko, A., Eriksson, L.-E.: Flame oscillations in tubes with nonslip at the wall. Combust. Flame 145, 675–687 (2006)

    Article  Google Scholar 

  24. Clanet, C., Searby, G.: On the ‘tulip flame’ phenomenon. Combust. Flame 105, 225–238 (1996)

    Article  Google Scholar 

  25. Xu, S., Aslam, T., Stuart, D.S.: High resolution numerical simulation of ideal and non-ideal compressible reacting flows with embedded internal boundaries. Combust. Theory Model. 1, 113–142 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Tailor & Francis (1980)

  27. Sharpe, G.J.: Private communication

  28. Sharpe, G.J., Falle, S.A.E.G.: Nonlinear cellular instabilities of planar premixed flames: numerical simulations of the Reactive Navier-Stockes equations. Combust. Theory Model. 10, 483–514 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Kagan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kagan, L., Sivashinsky, G. On the Transition from Deflagration to Detonation in Narrow Tubes. Flow Turbulence Combust 84, 423–437 (2010). https://doi.org/10.1007/s10494-010-9252-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-010-9252-9

Keywords

Navigation