Skip to main content
Log in

Comparison Between Numerically Simulated and Experimentally Measured Flowfield Quantities Behind a Pulsejet

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Pulsed combustion is receiving renewed interest as a potential route to higher performance in air breathing propulsion and ground based power generation systems. Pulsejets offer a simple experimental device with which to study unsteady combustion phenomena and validate simulations. Previous computational fluid dynamics (CFD) simulations focused primarily on pulsejet combustion and exhaust processes. This paper describes a new inlet sub-model which simulates the fluidic and mechanical operation of a valved pulsejet head. The governing equations for this sub-model are described. Sub-model validation is provided through comparisons of simulated and experimentally measured reed valve motion, and time averaged inlet mass flow rate. The updated pulsejet simulation, with the inlet sub-model implemented, is validated through comparison with experimentally measured combustion chamber pressure, inlet mass flow rate, operational frequency, and thrust. Additionally, the simulated pulsejet exhaust flowfield, which is dominated by a starting vortex ring, is compared with particle imaging velocimetry (PIV) measurements on the bases of velocity, vorticity, and vortex location. The results show good agreement between simulated and experimental data. The inlet sub-model is shown to be critical for the successful modeling of pulsejet operation. This sub-model correctly predicts both the inlet mass flow rate and its phase relationship with the combustion chamber pressure. As a result, the predicted pulsejet thrust agrees very well with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moore, M.: Personal air vehicles: a rural/regional and intra-urban on-demand transportation system. AIAA Pap. 2003–2646 (2003)

  2. Skorupa, J.: Military airlift—catching the next wave. AIAA Pap. 2003–2747 (2003)

  3. Paxson, D.E.: Ejector enhanced pulsejet based pressure gain combustors: an old idea with a new twist. AIAA Pap. 2005–4216 (2005)

  4. Kentfield, J.A.C.: Nonsteady, one-dimensional, internal, compressible flows—theory and applications, vol. 31, pp. 191–235. Oxford University Press, New York (1993)

    Google Scholar 

  5. Putnam, A.A., Belles, F.E., Kentfield, J.A.C.: Pulse combustion. Pror. Energy Combust. Sci. 12, 43–79 (1986)

    Article  Google Scholar 

  6. Maxworthy, T.: Turbulent vortex rings. J. Fluid Mech. 64, 227–239 (1974)

    Article  MATH  ADS  Google Scholar 

  7. Gharib, M., Rambod, E., Shariff, K.: A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121–140 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Arakeri, J.H., Das, D., Krothapalli, A., Lourenco, L.: Vortex ring formation at the open end of a shock tube: a particle image velocimetry study. Phys. Fluids 16, 1008–1019 (2004)

    Article  ADS  Google Scholar 

  9. Rosenfeld, M., Rambod, E., Gharib, M.: Circulation and formation number of laminar vortex rings. J. Fluid Mech. 376, 297–318 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. James, S., Madnia, C.K.: Direct numerical simulation of a laminar vortex ring. Phys. Fluids 8, 2400–2414 (1996)

    Article  MATH  ADS  Google Scholar 

  11. Nitsche, M.: Scaling properties of vortex ring formation at a circular tube opening. Phys. Fluids 8, 1848–1855 (1996)

    Article  MATH  ADS  Google Scholar 

  12. Wilson, J., Wernet, M.P., Paxson, D.E.: Vortex rings generated by a shrouded Hartmann–Sprenger tube. AIAA J. 44(11), 2706–2719 (2006)

    Article  ADS  Google Scholar 

  13. Paxson, D.E., Wernet, M.P., John, W.T.: Experimental investigation of unsteady thrust augmentation using a speaker-driven jet. AIAA J. 45(3), 607–615 (2007)

    Article  ADS  Google Scholar 

  14. Tamburello, D.A., Amitay, M.: Active control of a free jet using a synthetic jet. AIAA pap. 2005–1274 (2005)

  15. Erickson, R., Zinn, B.: Numerical investigation of the effect of energy addition processes on pulsejet performance. AIAA Pap. 2004–1210 (2004)

  16. Litke P., Schauer, F., Paxson, D.E.: Assessment of the performance of a pulsejet and comparison with a pulsed-detonation engine. AIAA Pap. 2005–228 (2005)

  17. Kentfield, J.A.C., Rehman, A., Cronje, J.: Performance of pressure-gain combustors without moving parts. J. Energy 4(2), 56–63 (1980)

    Article  Google Scholar 

  18. Geng, T., Kiker, A., Ordon, R., Kuznetsov, A.V., Zeng, T.F., Roberts, W.L.: Combined numerical and experimental investigation of a hobby-scale pulsejet. J. Propuls. Power 23(1), 186–193 (2007)

    Article  Google Scholar 

  19. Geng, T., Schoen, M.A., Kuznetsov, A.V., Roberts, W.L.: Combined numerical and experimental investigation of a 15-centimeter valveless pulsejet. Flow Turbul. Combust. 78, 17–33 (2007)

    Article  Google Scholar 

  20. Geng, T., Zheng, F., Kiker, A.P., Kuznetsov, A.V., Roberts, W.L.: Experimental and numerical investigation of an 8-centimeter valveless pulsejet. Exp. Therm. Fluid Sci. 31, 641–647 (2007)

    Article  Google Scholar 

  21. Paxson, D.E., Wilson, J., Dougherty, K.: Unsteady ejector performance: an experimental investigation using a pulsejet driver. AIAA Pap. 2002–3915 (2002)

  22. Paxson, D.E., Litke, P.J., Schauer, F.R., Bradley R.P., Hoke, J.L.: Performance assessment of a large scale pulsejet-driven ejector system. AIAA Pap. 2006–1021 (2006)

  23. Choutapalli, I., Krophatalli, A., Arakeri, J.H.: An experimental study of an axisymmetric turbulent pulsed air jet. J. Fluid Mech. 631, 23–63 (2009)

    Article  MATH  Google Scholar 

  24. Westbrook, C.K., Dryer, F.L.: Simplified reaction mechanisms for the oxidation of hydrocarbon. Combust. Sci. Technol. 27, 31–43 (1981)

    Article  Google Scholar 

  25. Bardina, J.E., Huang, P.G., Coakley, T.J.: Turbulence modeling validation testing and development. NASA Tech. Memo. 110446 (1997)

  26. Didden, N.: On the formation of vortex rings: rolling-up and production of circulation. Z. Angew. Math. Phys. 30, 101–116 (1979)

    Article  Google Scholar 

  27. Wentworth, T.J., Paxson, D.E., Wernet, M.P.: Conditionally sampled pulsejet driven ejector flow field using DPIV. AIAA Pap. 2002–3231 (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey V. Kuznetsov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geng, T., Zheng, F., Kuznetsov, A.V. et al. Comparison Between Numerically Simulated and Experimentally Measured Flowfield Quantities Behind a Pulsejet. Flow Turbulence Combust 84, 653–667 (2010). https://doi.org/10.1007/s10494-010-9247-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-010-9247-6

Keywords

Navigation