Skip to main content
Log in

Investigation of the Dynamical Response of Methane/Air Counterflow Flames to Inflow Mixture Composition and Flow Field Perturbations

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

This work presents an analysis of the response of laminar, stretched, premixed CH4-air counterflow flames subject to periodical perturbations of the inflow mixture composition and the flow field in the context of ILDM and REDIM. Investigations of the perturbation propagation show, that the perturbation reaches the flame under certain conditions only; changes of the perturbation due to dissipative processes are investigated. Different methods are applied to gain an in-depth view of the influence of the perturbation on the chemical kinetics, namely correlation analyses of species in state space and timescale and element composition analyses. For the timescale analyses, two methods are applied, the ILDM method and a new concept for timescale analysis within the REDIM method. It is shown, that the perturbation does not change the global behaviour of the chemical kinetics and it is suggested to apply REDIMs for a low-dimensional description of perturbed flames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cho, J.H., Lieuwen, T.: Laminar premixed flame response to equivalence ratio oscillations. Combust. Flame 140(1–2), 116–129 (2005)

    Article  Google Scholar 

  2. Stahl, G., Warnatz, J.: Numerical investigation of time-dependent properties and extinction of strained methan- and propane-air flamelets. Combust. Flame 85(3–4), 285–299 (1991)

    Article  Google Scholar 

  3. Im, H.G., Law, C.K., Kim, J.S., Williams, F.A.: Response of counterflow diffusion flames to oscillating strain rates. Combust. Flame 100(1–2), 21–30 (1995)

    Article  Google Scholar 

  4. Fleifil, M., Annaswamy, A.M., Ghonheim, Z.A., Ghoniem, A.F.: Response of a laminar premixed flame to flow oscillations: a kinematic model and thermoacoustic instability results. Combust. Flame 106(4), 487–510 (1996)

    Article  Google Scholar 

  5. Lieuwen, T., Zinn, B.T.: The role of equivalence ratio oscillations in driving combustion instabilities in low NOx gas turbines. Proc. Combust. Inst. 27, 1809–1816 (1998)

    Google Scholar 

  6. Darabiha, N.: Transient behaviour of laminar counterflow hydrogen-air diffusion flames with complex chemistry. Combust. Sci. Technol. 86(1–6), 163–181 (1992)

    Article  Google Scholar 

  7. Darabiha, N., Candel, S., Wirth, D.A., Mahan, J.R.: Numerical studis of a pulsing burner-stabilized laminar premixed methan-air flame. Combust. Sci. Technol. 113(1), 35–47 (1996)

    Article  Google Scholar 

  8. Schreel, K.R.A.M., Rook, R., de Goey, L.P.H.: The acoustic response of burner-stabilized premixed flat flames. Proc. Combust. Inst. 29(1), 115–122 (2002)

    Article  Google Scholar 

  9. Rook, P., de Goey, L.P.H., Somers, L.M.T., Schreel, K.R.A.M., Parchen, R.: Response of burner-stabilized flat flames to acoustic perturbations. Combust. Theory Model. 6(2), 223–242 (2002)

    Article  ADS  Google Scholar 

  10. Kornilov, V.N., Schreel, K.R.A.M., de Goey, L.P.H.: Experimental assessment of the acoustic response of laminar premixed Bunsen flames. Proc. Combust. Inst. 31(1), 1239–1246 (2007)

    Article  Google Scholar 

  11. Huang, Z., Bechtold, J.K., Matalon, M.: Weakly stretched premixed flames in oscillating flows. Combust. Theory Model. 2(2), 115–133 (1999)

    Article  ADS  Google Scholar 

  12. Joulin, G., Cambray, P., Jaouen, N.: On the response of a flame ball to oscillating velocity gradients. Combust. Theory Model. 6(1), 53–78 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Tyagi, M., Chakravarthy, S.R., Sujith, R.I.: Unsteady combustion response of a ducted non-premixed flame and acoustic coupling. Combust. Theory Model. 11(2), 205–226 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Sung, C.J., Law, C.K.: Structural sensitivity, response and extinction of diffusion and premixed flames in oscillating counterflow. Combust. Flame 123(3), 375–388 (2000)

    Article  Google Scholar 

  15. Wang, H.Y., Bechtold, J.K., Law, C.K.: Nonlinear oscillations in diffusion flames. Combust. Flame 145(1–2), 376–389 (2006)

    Article  Google Scholar 

  16. Metzener, P., Matalon, M.: Diffusive-thermal instabilities of diffusion flames: onset of cells and oscillations. Combust. Theory Model. 10(4), 701–725 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Buckmaster, J., Zhang, Y.: Oscillating edge-flames. Combust. Theory Model. 3(3), 547–565 (1999)

    Article  MATH  ADS  Google Scholar 

  18. Delhaye, S., Somers, L.M.T., van Oijen, J.A., de Goey, L.P.H.: Incorporating unsteady flow-effects in flamelet-generated manifolds. Combust. Flame 155, 133–144 (2008)

    Article  Google Scholar 

  19. Tomlin, A.S., Turanyi, T., Pilling, M.J.: Mathematical tools for the construction, investigation and reduction of combustion mechanisms. In: Pilling, M.J. (ed.) pp. 293–437. Elsevier, Amsterdam (1997)

  20. Smooke, M.D.: Lecture Notes in Physics, p. 384 (1991)

  21. Ren, Z., Pope, S.B.: The use of slow manifolds in reactive flows. Combust. Flame 147(4), 243–261 (2006)

    Article  Google Scholar 

  22. Maas, U., Pope, S.B.: Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame 88(3–4), 239–264 (1992)

    Article  Google Scholar 

  23. Maas, U., Pope, S.B.: Implementation of simplified chemical kinetics based on intrinsic low-dimensional manifolds. Proc. Combust. Inst. 24, 103–112 (1992)

    Google Scholar 

  24. Bykov, V., Maas, U.: The extension of the ILDM concept to reaction-diffusion manifolds. Combust. Theory Model. 11(6), 839–862 (2007)

    Article  MATH  Google Scholar 

  25. Bykov, V., Maas, U.: Problem adapted reduced models based on Reaction-Diffusion Manifolds (ReDims). Proc. Combust. Inst. 32 (2008, in press)

  26. Schmidt, D., Blasenbrey, T., Maas, U.: Instrinsic low-dimensional manifolds of strained and unstrained flames. Combust. Theory Model. 2(2), 135–152 (1998)

    Article  MATH  ADS  Google Scholar 

  27. Warnatz, J., Maas, U., Dibble, R.W.: Combustion. Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation. Springer, Berlin (2006)

    Google Scholar 

  28. Maas, U., Warnatz, J.: Ignition processes in hydrogen-oxygen mixtures. Combust. Flame 74(1), 53–69 (1988)

    Article  Google Scholar 

  29. Davis, M.J.: Low-dimensional manifolds in reaction-diffusion equations. 1. Fundamental aspects. J. Phys. Chem. 110(16), 5235–5256 (2006)

    Google Scholar 

  30. Davis, M.J.: Low-Dimensional manifolds in Reaction-diffusion equations. 2. Numerical analysis and method development. J. Phys. Chem. 110(16), 5257–5272 (2006)

    Google Scholar 

  31. Bogolyubov, N.N., Mitropolsky, Y.A.: Asymptotic Methods in the Theory of Nonlinear Oscillations. N.Y. Gordon and Breach, Delhi (1961)

    Google Scholar 

  32. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31(1), 53–98 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  33. Roussel, M.R., Fraser, S.J.: Global analysis of enzyme inhibition kinetics. J. Phys. Chem. 97, 8316–8327 (1993)

    Article  Google Scholar 

  34. Roussel, M.R., Fraser, S.J.: Invariant manifold methods for metabolic model reduction. Chaos 11, 196–206 (1993)

    Article  ADS  Google Scholar 

  35. Singh, S., Rastigejev, Y., Paolucci, S., Powers, J.M.: Viscous detonation in H2-O2-Ar using intrinsic low-dimensional manifolds and wavelet adaptive multilevel representation. Combust. Theory Model. 5, 163–184 (2001)

    Article  MATH  ADS  Google Scholar 

  36. Singh, S., Powers, J.M., Paolucci, S.: On slow manifolds of chemically reactive systems. J. Chem. Phys. 117(4), 1482–1496 (2002)

    Article  ADS  Google Scholar 

  37. Hadjinicolaou, M., Goussis, D.A.: Asymptotic solution of tiff PDEs with the CSP method: the reaction diffusion equation. SIAM J. Sci. Comput. 20, 781–910 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  38. Valorani, M., Goussis, D.A.: Explicit time-scale splitting algorithm for stiff problems: auto-ignition of gaseous mixtures behind a steady stock. J. Comput. Phys. 169(1), 44–79 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. Gicquel, O., Darabiha, N., Thevenin, D.: Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proc. Combust. Inst. 28, 1901–1908 (2000)

    Article  Google Scholar 

  40. Bykov, V., Maas, U.: Extension of the ILDM method to the domain of slow chemistry. Proc. Combust. Inst. 31(1), 465–472 (2007)

    Article  Google Scholar 

  41. Golub, G.H., van Loan, C.F.: Matrix Computations. The John Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  42. Maas, U.: Efficient calculation of intrinsic low-dimensional manifolds for the simplification of chemical kinetics. Comput. Vis. Sci. 1(2), 69–82 (1998)

    Article  MATH  Google Scholar 

  43. König, K., Maas, U.: Sensitivity of instrinsic low-dimensional manifolds with respect to kinetic data. Proc. Combust. Inst. 30(1), 1317–1323 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin König.

Rights and permissions

Reprints and permissions

About this article

Cite this article

König, K., Bykov, V. & Maas, U. Investigation of the Dynamical Response of Methane/Air Counterflow Flames to Inflow Mixture Composition and Flow Field Perturbations. Flow Turbulence Combust 83, 105–129 (2009). https://doi.org/10.1007/s10494-008-9191-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-008-9191-x

Keywords

Navigation