Skip to main content
Log in

Comparison of Differing Formulations of the PCM Model by their Application to the Simulation of an Auto-igniting H 2/air Jet

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Different combustion models such as PCM (Presumed Conditional Moments) or ADF-PCM (Approximated Diffusion Flames Presumed Conditional Moments) can be used for RANS simulations of non premixed or partially premixed turbulent flames. In this paper, the auto-ignition experiment performed by Mastorakos and co-workers at Cambridge University is used as a validation case for comparing these two approaches. Furthermore, the first order PCM model is introduced to analyze the effects of the progress variable segregation and an improved version of ADF-PCM is developed with a pdf of the scalar dissipation rate. Compared to ADF-PCM models, the first and second order PCM models predict very sharp temperature and progress variable increase after ignition for all simulated cases. The segregation factors of the progress variable reach important values during the ignition for ADF-PCM models whereas for PCM, high values are reached at the beginning of the ignition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barths, H., Antoni, C., Peters, N.: Three-dimensional simulation of pollutant formation in a DI Diesel engine using multiple interactive flamelets. SAE paper 982459 (1998)

  2. Barths, H., Hasse, C., Bikas, G., Peters, N.: Simulation of combustion in direct injection diesel engines using a eulerian particle flamelet model. Proc. Combust. Inst. 28, 1161–1168 (2000)

    Google Scholar 

  3. Hasse, C., Bikas, G., Peters, N.: Modeling DI Diesel combustion using the eulerian particle flamelet model (EPFM). SAE paper 2000-01-2934 (2000)

  4. Bradley, D., Gaskell, P.H., Lau, A.K.C.: A mixedness-reactedness flamelet model for turbulent diffusion flames. Proc. Combust. Inst. 23, 685–692 (1990)

    Google Scholar 

  5. Bradley, D., Gaskell, P.H., Gu, X.J.: The mathematical modeling of liftoff and blowoff of turbulent non-premixed methane jet flames at high strain rates. Proc. Combust. Inst. 27, 1199–1206 (1998)

    Google Scholar 

  6. Vervisch, L., Hauguel, R., Domingo, P., Rullaud, M.: Three facets of turbulent combustion modelling: DNS of premixed V-flame, LES of lifted nonpremixed flame and RANS of jet-flame. J. Turbul. 5(4), 1–36 (2004)

    ADS  Google Scholar 

  7. Michel, J.B., Colin, O., Veynante, D.: Modeling ignition and chemical structure of partially premixed turbulent flames using tabulated chemistry. Combust. Flame 152, 80–99 (2008)

    Article  Google Scholar 

  8. Gicquel, O., Darabiha, N., Thevenin, D.: Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proc. Combust. Inst. 28, 1901–1908 (2000)

    Article  Google Scholar 

  9. Peters, N.: Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci. 10, 319–339 (1984)

    Article  Google Scholar 

  10. Peters, N.: Laminar flamelet concepts in turbulent combustion. Proc. Combust. Inst. 21, 1231–1250 (1986)

    ADS  Google Scholar 

  11. Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  12. Barlow, R.S.: Laser diagnostics and their interplay with computations to understand turbulent combustion. Proc. Combust. Inst. 31, 49–75 (2007)

    Article  Google Scholar 

  13. Cabra, R., Myhrvold, T., Chen, J.Y., Dibble, R.W., Karpetis, A.N., Barlow, R.S.: Simultaneous maser Raman-Rayleigh-LIF measurements and numerical modeling results of a lifted turbulent H2/N2 jet flame in a vitiated coflow. Proc. Combust. Inst. 29, 1881–1888 (2002)

    Article  Google Scholar 

  14. Myhrvold, T., Ertesvag, I.S., Gran, I.R., Cabra, R., Chen, J.Y.: A numerical investigation of a lifted H2/N2 turbulent jet flame in a vitiated coflow. Combust. Sci. Technol. 178, 1001–1030 (2006)

    Article  Google Scholar 

  15. Cao, R.R., Pope, S.B., Masri, A.R.: Turbulent lifted flames in a vitiated coflow investigated using joint pdf calculations. Combust. Flame 142, 438–453 (2005)

    Article  Google Scholar 

  16. Duwig, C., Fuchs, L.: Large eddy simulation of a H2/N2 lifted flame in a vitiated co-flow. Combust. Sci. Technol. 180, 453–480 (2008)

    Article  Google Scholar 

  17. Masri, A.R., Cao, R., Pope, S.B., Goldin, G.: PDF calculations of turbulent lifted flames of H2/N2 fuel issuing into a vitiated co-flow. Combust. Theory Model. 8, 1–22 (2004)

    Article  ADS  Google Scholar 

  18. Markides, C.N., Mastorakos, E.: An experimental study of hydrogen autoignition in a turbulent co-flow of heated air. Proc. Combust. Inst. 30, 883–891 (2005)

    Article  Google Scholar 

  19. Mastorakos, E., Markides, C.N., Wright, Y.M.: Hydrogen autoignition in a turbulent duct flow: experiments and modelling. In: Conference on Modelling Fluid Flow (CMFF’03) (2003)

  20. Markides, C.N., De Paola, G., Mastorakos, E.: Measurements and simulations of mixing and autoignition of an n-heptane plume in a turbulent flow of heated air. Exp. Therm. Fluid Sci. 31, 393–401 (2007)

    Article  Google Scholar 

  21. Maas, U., Pope, S.B.: Implementation of simplified chemical kinetics based on intrinsic low dimensional manifolds. Proc. Combust. Inst. 24, 103–112 (1992)

    Google Scholar 

  22. van Oijen, J.A., Lammers, F.A., de Goey, L.P.H.: Modeling of complex premixed burner systems by using flamelet-generated manifolds. Combust. Flame 127, 2124–2134 (2001)

    Article  Google Scholar 

  23. Pope, S.B.: Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust. Theory Model. 1, 41–63 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Fiorina, B., Baron, R., Gicquel, O., Thevenin, D., Carpentier, S., Darabiha, N.: Modelling non-adiabatic partially premixed flames using flame-prolongation of ILDM. Combust. Theory Model. 7, 449–470 (2003)

    ADS  Google Scholar 

  25. Fiorina, B., Gicquel, O., Vervisch, L., Carpentier, S., Darabiha, N.: Approximating the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelet tabulation. Combust. Flame 140, 147–160 (2005)

    Article  Google Scholar 

  26. Fiorina, B., Gicquel, O., Vervisch, L., Carpentier, S., Darabiha, N.: Premixed turbulent combustion modeling using tabulated detailed chemistry and pdf. Proc. Combust. Inst. 30, 867–874 (2005)

    Article  Google Scholar 

  27. Ribert, G., Champion, M., Gicquel, O., Darabiha, N., Veynante, D.: Modeling nonadiabatic turbulent premixed reactive flows including tabulated chemistry. Combust. Flame 141, 271–280 (2005)

    Article  Google Scholar 

  28. Domingo, P., Vervisch, L., Payet, S., Hauguel, R.: DNS of a premixed turbulent V-flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry. Combust. Flame 143(4), 566–586 (2005)

    Article  Google Scholar 

  29. Galpin, J., Angelberger, C., Naudin, A., Vervisch, L.: Large-eddy simulation of H2-air auto-ignition using tabulated chemistry. Turbulence J. 9, 1–21 (2008)

    Google Scholar 

  30. Mueller, M.A., Kim, T.J., Yetter, R.A., Dryer, F.L.: Flow reactor studies and kinetic modeling of the H2/O2 reaction. Int. J. Chem. Kinet. 31, 113–125 (1999)

    Article  Google Scholar 

  31. Kee, R.J., Rupley, F.M., Miller, J.A.: Chemkin-ii: a fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. Tech. Rep. SAND89-8009B, Sandia National Laboratories (1989)

  32. Bilger, R.W.: Conditional moment closure for turbulent reacting flow. Phys. Fluids 5(2), 436–444 (1993)

    Article  MATH  ADS  Google Scholar 

  33. Mastorakos, E., Baritaud, T.A., Poinsot, T.J.: Numerical simulations of autoignition in turbulent mixing flows. Combust. Flame 109, 198–223 (1997)

    Article  Google Scholar 

  34. Effelsberg, E., Peters, N.: Scalar dissipation rates in turbulent jets and jet diffusion flames. Proc. Combust. Inst. 22, 693–700 (1988)

    Google Scholar 

  35. Zolver, M., Torres, A., Klahr, D.: An unstrucured parallel solver for engine intake and combustion stroke simulation. SAE paper 2002-01-1120 (2002)

  36. Zolver, M., Klahr, D., Bohbot, J., Lajet, O., Torres, A.: Reactive CFD in engines with a new unstructured parallel solver. Oil Gas Sci. Technol. 58, 33–46 (2003)

    Article  Google Scholar 

  37. Linan, A.: The asymptotic structure of counterflow diffusion flames for large activation energies. Acta Astronaut. 1, 1007–1039 (1974)

    Article  Google Scholar 

  38. Poinsot, T., Veynante, D.: Theoretical And Numerical Combustion. R.T. Edwards, Philadelphia (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Baptiste Michel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michel, JB., Colin, O. & Veynante, D. Comparison of Differing Formulations of the PCM Model by their Application to the Simulation of an Auto-igniting H 2/air Jet. Flow Turbulence Combust 83, 33–60 (2009). https://doi.org/10.1007/s10494-008-9188-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-008-9188-5

Keywords

Navigation