Skip to main content

Advertisement

Log in

Numerical Investigation of the Time Scales of Single Droplet Burning

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The effect of gas phase velocity fluctuations on single droplet burning is investigated numerically. The main objective of this study is to understand the effect of gas phase turbulence on nitric oxide formation in single droplet flames. Since the interaction of gas phase velocity fluctuations with droplet burning is of sequential character, a separate investigation of droplet momentum coupling and droplet burning is performed. Momentum coupling controls droplet relaxation against changes of the gas phase velocity along the droplet trajectory and, thereby, determines to what extend gas phase velocity fluctuations translate into droplet slip velocity fluctuations. This coupling effect acts as a high pass filter with a cutoff frequency determined by the droplet Reynolds number and diameter. In the simulation of single droplet burning detailed models for chemical reaction, diffusive species transport and evaporation are used. A significant effect of slip velocity fluctuations on the mean values of NO formation rate is observed. The effect of slip velocity fluctuations on the mean NO formation rate is frequency dependent. The frequency response of the droplet flame is similar to that of a low pass filter. The droplet flame time scale characterizing the response to slip velocity fluctuations is found to correlate with chemical time scales. This time scale is not affected by droplet diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baessler, S., Moesl, K.G., Sattelmayer, T.: NOx emissions of a premixed partially vaporized kerosene spray flame. ASME Paper GT2006-90248 (2006)

  2. Beck, C.H., Koch, R., Bauer, H.-J.: Investigation of the effect of incomplete droplet prevaporization on NOx emissions in LDI combustion systems. J. Eng. Gas Turbines Power (2008). doi:10.1115/1.2906185

  3. Aggarwal, S.K.: A review of spray ignition phenomena: present status and future research. Progr. Energy Combust. Sci. 24, 565–600 (1998)

    Article  Google Scholar 

  4. Kuo, K.K.: Principles of Combustion. Wiley (2005)

  5. Williams, F.A.: Combustion Theory. Addison Wesley (1985)

  6. Chiu, H.H., Liu, T.M.: Group combustion of liquid droplets. Combust. Sci. Technol. 17, 127–142 (1977)

    Article  Google Scholar 

  7. Spalding, D.B.: The combustion of liquid fuels. Proc. Combust. Inst. 4, 847–864 (1953)

    Google Scholar 

  8. Pope, D.N., Gogos, G.: Numerical simulation of fuel droplet extinction due to forced convection. Combust. Flame 142, 89–106 (2005)

    Article  Google Scholar 

  9. Burger, M., Schmehl, R., Koch, R., Wittig, S., Bauer, H.J.: DNS of droplet vortex interaction with a Karman vortex street. Int. J. Heat Fluid Flow 27, 181–191 (2006)

    Article  Google Scholar 

  10. Okai, K., et al.: Combustion of single droplets and droplet pairs in a vibrating field under microgravity. Proc. Combust. Inst. 28, 977–983 (2000)

    Google Scholar 

  11. Tanabe, M., et al.: Influence of standing sound waves on droplet combustion. Proc. Combust. Inst. 28, 1007–1013 (2000)

    Google Scholar 

  12. Dattarajan, S., Lutomirski, A., Lobbia, R., Smith, O.I., Karagozian, A.R.: Acoustic excitation of droplet combustion in microgravity and normal gravity. Combust. Flame 144, 299–317 (2005)

    Article  Google Scholar 

  13. Dubey, R.K., Mcquay, M.Q., Carvalho, J.A.: An experimental and theoretical investigation on the effect of acoustics on spray combustion. Proc. Combust. Inst. 27, 2017–2023 (1998)

    Google Scholar 

  14. Ha, M.Y., Yavuzkurt, S.: Combustion of a single carbon or char particle in the presence of high intensity acoustic fields. Combust. Flame 86, 33–46 (1991)

    Article  Google Scholar 

  15. Chiu, H.H.: Multiple-state phenomena and hysteresis of a combusting isolated droplet. Atom. Sprays 6, 1–26 (1996)

    MathSciNet  Google Scholar 

  16. Schiller, L., Naumann, A.: A drag coefficient correlation. V.D.I. Zeitung 77, 318–320 (1935)

    Google Scholar 

  17. Jacobs, O.L.R.: Introduction to Control Theory. Oxford University Press, Oxford (1993)

    MATH  Google Scholar 

  18. Rogers, C.B., Eaton, J.K.: The effect of small particles on fluid turbulence in a flat-plate, turbulent boundary layer in air. Phys. Fluids 3, 928–937 (1991)

    Article  ADS  Google Scholar 

  19. Hsiang, L.P., Faeth, G.M.: Drop deformation and breakup due to shock wave and steady disturbances. Int. J. Multiph. Flow 21, 545–560 (1995)

    Article  MATH  Google Scholar 

  20. Reid, R.C., Prausnitz, J.M., Poling, B.E.: The Properties of Gases and Liquids. McGraw-Hill (1986)

  21. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena, 2nd edn. Wiley (2002)

  22. Wilke, C.R.: A viscosity equation for gas mixture. J. Chem. Phys. 18, 517–519 (1950)

    Article  ADS  Google Scholar 

  23. Mason, E.A., Saxena, S.C.: Approximate formula for the thermal conductivity of gas mixtures. Phys. Fluids 1, 361–369 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  24. Held, T.J., Marchese, A.J., Dryer, F.L.: A semi-empirical reaction mechanism for n-heptane oxidation and pyrolysis. Combust. Sci. Technol. 123, 107–146 (1997)

    Article  Google Scholar 

  25. Hewson, J.C., Bollig, M.: Reduced mechanisms for NOx emissions from hydrocarbon diffusion flames. Proc. Combust. Inst. 26, 2171–2179 (1996)

    Google Scholar 

  26. NIST Standard Reference Database: http://webbook.nist.gov/chemistry/ (2005)

  27. Majer, V., Svoboda, V.: Enthalpies of vaporization of organic compounds: a critical review and data compilation. IUPAC Chem. Data Ser. 32 (1985)

  28. Van Doormaal, J.P., Raithby, G.D.: Enhancements of the simple method for predicting incompressible fluid flows. Numer. Heat Transf. 7, 147–163 (1984)

    Article  MATH  ADS  Google Scholar 

  29. Dennis, S.C.R., Walker, J.D.A: Calculation of the steady flow past aspere at low and moderate Reynolds numbers. J. Fluid Mech. 48, 771–789 (1971)

    Article  MATH  ADS  Google Scholar 

  30. LeClair, B.P., Hamielec, A.E., Pruppacher, H.R.: A numerical study of the drag on a sphere at low and intermediate Reynolds numbers. J. Atmos. Sci. 27, 308–315 (1970)

    Article  ADS  Google Scholar 

  31. Yuge, T.: Experiments on heat transfer from spheres including combined natural and forced convection. J. Heat Trans. 82, 214–220 (1960)

    Google Scholar 

  32. Ranz, W.E., Marshall, W.R.: Evaporation from drops. Chem. Eng. Prog. 48, 141–146 and 173–179 (1952)

    Google Scholar 

  33. Sazhin, S.: Advanced models of fuel droplet heating and evaporation. Progr. Energy Combust. Sci. 32, 162–214 (2006)

    Article  Google Scholar 

  34. Renksizbulut, M., Yuen, M.C: Eexperimental study of droplet evaporation in a high temperature air stream. J. Heat Trans. 105, 384–388 (1983)

    Article  Google Scholar 

  35. Raithby, G.D., Eckert, E.R.G.: The effect of turbulence parameters and support position on the heat transfer from spheres. Int. J. Heat Mass Transfer 11, 1233 (1968)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. H. Beck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, C.H., Koch, R. & Bauer, HJ. Numerical Investigation of the Time Scales of Single Droplet Burning. Flow Turbulence Combust 82, 571–598 (2009). https://doi.org/10.1007/s10494-008-9165-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-008-9165-z

Keywords

Navigation