Skip to main content
Log in

A Parallel Block-Structured Finite Volume Method for Flows in Complex Geometry with Sliding Interfaces

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

An implementation of the finite volume method is presented for the simulation of three dimensional flows in complex geometries, using block structured body fitted grids and an improved linear interpolation scheme. The interfaces between blocks are treated in a fully implicit manner, through modified linear solvers. The cells across block interfaces can be matching one-to-one or many-to-one. In addition, the use of sliding block interfaces allows the incorporation of moving rigid bodies inside the flow domain. An algebraic multigrid solver has been developed that works with this block structured approach, speeding up the iterations for the pressure. The flow solver is parallelized by domain decomposition using OpenMP, based on the same grid block structure. Application examples are presented that demonstrate these capabilities. This numerical model has been made freely available by the authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albensoeder, S., Kuhlmann, H.C.: Accurate three-dimensional lid-driven cavity flow. J. Comput. Phys. 206, 536–558 (2005)

    Article  MATH  ADS  Google Scholar 

  2. Ferziger, J., Peric, M.: Computational Methods for Fluid Dynamics. Springer, Berlin (2002)

    MATH  Google Scholar 

  3. Iwatsu, R., Hyun, J.M., Kuwahara, K.: Analyses of three dimensional flow calculations in a driven cavity. Fluid Dyn. Res. 6(2), 91–102 (1990)

    Article  ADS  Google Scholar 

  4. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Jiménez, A.: Interaccio entre les estructures de flux i el transport de materia. Aplicacio a un doll pla turbulent. Ph.D. thesis, URV (2003)

  6. Lange, C.F., Schäfer, M., Durst, F.: Local block refinement with a multigrid solver. Int. J. Numer. Methods Fluids 38, 21–41 (2002)

    Article  MATH  ADS  Google Scholar 

  7. Lehnhauser, T., Schäfer, M.: Improved linear interpolation practice for finite-volume schemes on complex grids. Int. J. Numer. Methods Fluids 38, 625–645 (2002)

    Article  ADS  Google Scholar 

  8. Lehnhauser, T., Schäfer, M.: Efficient discretization of pressure-correction equations on non-orthogonal grids. Int. J. Numer. Methods Fluids 42, 211–231 (2003)

    Article  ADS  Google Scholar 

  9. Lehnhauser, T., Ertem-Muller, S., Schafer, M., Janicka, J.: Advances in numerical methods for simulating turbulent flows. Prog. Comput. Fluid Dyn. 4(3–5), 208–228 (2004)

    Article  Google Scholar 

  10. Lilek, Z., Muzaferija, S., Peric, M., Seidl, V.: An implicit finite-volume method using nonmatching blocks of structured grid. Numer. Heat Transf. B 32, 385–401 (1997)

    Article  ADS  Google Scholar 

  11. Mora Acosta, J.: Numerical algorithms for three dimensional computational fluid dynamic problems. Ph.D. thesis, UPC (2001)

  12. Peric, M.: Numerical methods for computing turbulent flows. Course notes (2001)

  13. Rhie, C.M., Chow, W.L.: A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. AIAA J. 21, 1525–1532 (1983)

    Article  MATH  ADS  Google Scholar 

  14. Usera, G., Vernet, A., Ferré, J.A.: Use of time resolved PIV for validating LES/DNS of the turbulent flow within a PCB enclosure model. Flow Turbul. Combust. 77, 77–95 (2006)

    Article  MATH  Google Scholar 

  15. Zaleski, S.: Science and fluid dynamics should have more open sources. http://www.lmm.jussieu.fr/~zaleski/OpenCFD.html (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Usera.

Additional information

G. Usera was supported by FPI/DPI2003-06725-C02-01 from DGI, Ministerio de Educación y Cultura y Fondos FEDER, Spain, grants 33/07 PDT, I+D CSIC, Uruguay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usera, G., Vernet, A. & Ferré, J.A. A Parallel Block-Structured Finite Volume Method for Flows in Complex Geometry with Sliding Interfaces. Flow Turbulence Combust 81, 471–495 (2008). https://doi.org/10.1007/s10494-008-9153-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-008-9153-3

Keywords

Navigation