Skip to main content
Log in

Mixing in Circular and Non-circular Jets in Crossflow

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Coherent structures and mixing in the flow field of a jet in crossflow have been studied using computational (large eddy simulation) and experimental (particle image velocimetry and laser-induced fluorescence) techniques. The mean scalar fields and turbulence statistics as determined by both are compared for circular, elliptic, and square nozzles. For the latter configurations, effects of orientation are considered. The computations reveal that the distribution of a passive scalar in a cross-sectional plane can be single- or double-peaked, depending on the nozzle shape and orientation. A proper orthogonal decomposition of the transverse velocity indicates that coherent structures may be responsible for this phenomenon. Nozzles which have a single-peaked distribution have stronger modes in transverse direction. The global mixing performance is superior for these nozzle types. This is the case for the blunt square nozzle and for the elliptic nozzle with high aspect ratio. It is further demonstrated that the flow field contains large regions in which a passive scalar is transported up the mean gradient (counter-gradient transport) which implies failure of the gradient diffusion hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yuan, L., Street, R., Ferziger, J.: Large-Eddy simulation of a round jet in crossflow. J. Fluid Mech. 379, 71–104 (1999)

    Article  MATH  ADS  Google Scholar 

  2. Gutmark, E., Grinstein, F.: Flow control with noncircular jets. Ann. Rev. Fluid Mech. 31, 239–272 (1999)

    Article  ADS  Google Scholar 

  3. Yuan, L., Street, R.: Trajectory and entrainment of a round jet in crossflow. Phys. Fluids 10(9), 2323–2335 (1998)

    Article  ADS  Google Scholar 

  4. Ibrahim, I., Murugappan, S., Gutmark, E.: Penetration, mixing and turbulent structures of circular and non-circular jets in cross flow, AIAA-2005-0300. In: 43th AIAA Aerospace Science Meeting Proceedings, AIAA (2005)

  5. Pratte, B., Baines, W.: Profiles of the round turbulent jet in a cross flow. J. Hydraul. Div. ASCE 92(HY6), 53–64 (1967)

    Google Scholar 

  6. Kelso, R., Smits, A.: Horseshoe vortex systems resulting from the interaction between a laminar boundary layer and a transverse jet. Phys. Fluids 7(1), 153–158 (1995)

    Article  ADS  Google Scholar 

  7. Fric, T., Roshko, A.: Vortical structure in the wake of a tranverse jet. J. Fluid Mech. 279, 1–47 (1994)

    Article  ADS  Google Scholar 

  8. Joeng, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  9. Smith, S., Mungal, M.: Mixing, structure and scaling of the jet in crossflow. J. Fluid Mech. 357, 83–122 (1998)

    Article  ADS  Google Scholar 

  10. Kelso, R., Lim, T., Perry, A.: An experimental study of round jets in cross-flow. J. Fluid Mech. 306, 111–144 (1996)

    Article  ADS  Google Scholar 

  11. Muppidi, S., Mahesh, K.: Study of trajectories of jets in crossflow using direct numerical simulations. J. Fluid Mech. 530, 81–100 (2005)

    Article  MATH  ADS  Google Scholar 

  12. Kamotani, Y., Greber, I.: Experiments on confined jets in cross flow. Tech. Rep. CR-2392, NASA (1974)

  13. Haven, B., Kurosaka, M.: Kidney and anti-kidney vortices in crossflow jets. J. Fluid Mech. 352, 27–64 (1997)

    Article  ADS  Google Scholar 

  14. Liscinsky, D., True, B., Holdeman, J.: Crossflow mixing of noncircular jets. J. Propuls. Power 12(2), 225–230 (1996)

    Google Scholar 

  15. Su, L., Mungal, M.: Simultaneous measurements of scalar and velocity field evolution in turbulent crossflowing jets. J. Fluid Mech. 513, 1–45 (2004)

    Article  MATH  ADS  Google Scholar 

  16. Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91(3), 99–152 (1963)

    Article  ADS  Google Scholar 

  17. Bardina, J., Ferziger, J., Reynolds, W.: Improved subgrid scale models for large Eddy simulation, AIAA-80-1357. In: 13th Fluid and Plasma Dynamics Conference, AIAA (1980)

  18. Germano, M., Piomelli, U., Moin, P., Cabot, W.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3, 1760–1765 (1991)

    Article  MATH  ADS  Google Scholar 

  19. Fureby, C., Grinstein, F.: Large Eddy simulation of high-reynolds free and wall-bounded flows. J. Comp. Phys. 181, 68–97 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Kravchenko, A., Moin, P.: On the effect of numerical errors in large Eddy simulations of turbulent flows. J. Comp. Phys. 131, 310–322 (1997)

    Article  MATH  ADS  Google Scholar 

  21. Ghosal, S.: An analyis of numerical errors in large-Eddy simulations of turbulence. J. Comp. Phys. 125, 187–206 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Olsson, M., Fuchs, L.: Large eddy simulation of a forced semiconfined circular impinging jet. Phys. Fluids 10(2), 476–486 (1998)

    Article  ADS  Google Scholar 

  23. Gullbrand, J., Chow, F.: The effect of numerical errors and turbulence models in large-Eddy simulations of a channel flow, with and without explicit filtering. J. Fluid Mech. 495, 323–341 (2003)

    Article  MATH  ADS  Google Scholar 

  24. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comp. Phys. 126, 202–228 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Salewski, M., Stankovic, D., Fuchs, L., Gutmark, E.: Coherent structures in circular and non-circular jets in crossflow, AIAA-2006-0907. In: 44th AIAA Aerospace Science Meeting Proceedings, AIAA (2006)

  26. Fearn, R., Weston, R.: Vorticity associated with a jet in a cross flow. AIAA J. 12(10), 1666–1671 (1974)

    Article  ADS  Google Scholar 

  27. Pope, S.: Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6(35), 1–24 (2004)

    Google Scholar 

  28. Kamotani, Y., Greber, I.: Experiments on a turbulent jet in a cross flow. AIAA J. 10(11), 1425–1429 (1972)

    ADS  Google Scholar 

  29. Priére, C., Gicquel, L., Kaufmann, P., Krebs, W., Poinsot, T.: Large Eddy simulation predictions of mixing enhancement for jets in cross-flows. J. Turbulence 5(005), 1–24 (2004)

    Article  ADS  Google Scholar 

  30. Pope, S.: Turbulent Flows. Cambridge University Press (2000)

  31. Holmes, P., Lumley, J., Berkooz, B.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press (1996)

  32. Berkooz, G., Holmes, P., Lumley, J.: The proper orthogonal decomposition in the analysis of turbulent flows. Ann. Rev. Fluid Mech. 25, 539–575 (1993)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Salewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salewski, M., Stankovic, D. & Fuchs, L. Mixing in Circular and Non-circular Jets in Crossflow. Flow Turbulence Combust 80, 255–283 (2008). https://doi.org/10.1007/s10494-007-9119-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-007-9119-x

Keywords

Navigation