New Molecular Transport Model for FDF/LES of Turbulence with Passive Scalar

Special Issue THMT06

Abstract

The paper addresses the issue of modelling and computation of wall-bounded turbulent flows with passive scalars. In the present approach, the large eddy simulation (LES) method is used to compute the velocity field in the near-wall zone. The LES is coupled with the Lagrangian filtered density function (FDF) model for the transport of a passive scalar. In the paper, we propose two models to account for the molecular transport near the wall and investigate their behaviour in the limit case of small filter widths. One of the models is tested numerically, and computational results for a heated channel flow are compared with the available DNS data.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Bergstrom, D.J., Yin, J., Wang, B.C.: LES of near-wall turbulent heat transfer using dynamic SGS models. In: Hanjalić, K., Nagano, Y., Tummers, M. (eds.) Turbulence, Heat and Mass Transfer 4. Begell House, Inc. (2004)

  2. 2.

    Bradshaw P.: Turbulence: the chief outstanding difficulty of our subject. Exp. Fluids 16, 203–216 (1994)

    Article  Google Scholar 

  3. 3.

    Dreeben, T.D., Pope, S.B.: Probability density function/Monte Carlo simulation of near-wall turbulent flows. J. Fluid Mech. 357, 141–167 (1998)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  4. 4.

    Chen, J.-Y.: A Eulerian PDF scheme for LES of nonpremixed turbulent combustion with second-order accurate mixture fraction. Combust. Theory Model. 11, 675–695 (2007)

    MATH  Article  Google Scholar 

  5. 5.

    Colucci, P.J., Jaberi, F.A., Givi, P., Pope, S.B.: Filtered density function for large eddy simulation of turbulent reacting flows. Phys. Fluids 10, 499–515 (1998)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  6. 6.

    Dopazo, C.: Recent developments in PDF methods. In: Libby, P.A., Williams, F.A. (eds.) Turbulent Reacting Flows, pp. 375–474. Academic, New York (1994)

    Google Scholar 

  7. 7.

    Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3, 1760–1765 (1991)

    MATH  Article  ADS  Google Scholar 

  8. 8.

    Iwamoto, K.: Database of Fully Developed Channel Flow. THTLAB Internal Report, No. ILR-0201. The Univ. of Tokyo (2002)

  9. 9.

    Gicquel, L.Y.M., Givi, P., Jaberi, F.A., Pope, S.B.: Velocity filtered density function for large eddy simulation of turbulent flows. Phys. Fluids 14, 1196–1213 (2002)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  10. 10.

    Jaberi, F.A., Colucci, P.J.: Large eddy simulation of heat and mass transport in turbulent flows. Part 2: Scalar field. Int. J. Heat Mass Transfer 46, 1827–1840 (2003)

    MATH  Article  Google Scholar 

  11. 11.

    Kloeden, P., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer (1992)

  12. 12.

    Launder B.E.: On the computation of convective heat transfer in complex turbulent flow. J. Heat Transfer 110, 1112–1128 (1988)

    Article  Google Scholar 

  13. 13.

    Lesieur, M.: Turbulence in Fluids. Kluwer, Dordrecht (1995)

    Google Scholar 

  14. 14.

    Lilly, D.K.: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A 3, 633–635 (1992)

    Article  ADS  Google Scholar 

  15. 15.

    Möbus, H., Gerlinger, P., Brüggemann, D.: Comparison of Eulerian and Lagrangian Monte Carlo PDF methods for turbulent diffusion flames. Combust. Flame 124, 519–534 (2001)

    Article  Google Scholar 

  16. 16.

    Moin, P., Squires, K.D., Cabot, W.H., Lee, S.: A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids 11, 2746–2757 (1991)

    ADS  Google Scholar 

  17. 17.

    Peirano, E., Chibbaro, S., Pozorski, J., Minier, J.-P.: Mean-field/PDF numerical approach for polydispersed turbulent two-phase flows. Prog. Energy Combust. Sci. 32, 315–371 (2006)

    Article  Google Scholar 

  18. 18.

    Peng, S.H., Davidson, L.: On a subgrid-scale heat flux model for large eddy simulation of turbulent thermal flow. Int. J. Heat Mass Transfer 45, 1393–1405 (2002)

    MATH  Article  Google Scholar 

  19. 19.

    Piomelli, U., Balaras, E.: Wall-layer models for large-eddy simulations. Annu. Rev. Fluid Mech. 34, 349–374 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  20. 20.

    Pope, S.B.: PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119–192 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  21. 21.

    Pope, S.B.: Turbulent Flows. Cambridge University Press (2000)

  22. 22.

    Pozorski, J., Minier, J.-P.: Stochastic modelling of conjugate heat transfer in near-wall turbulence. Int. J. Heat Fluid Flow 27, 867–877 (2006)

    Article  Google Scholar 

  23. 23.

    Pozorski, J., Wacławczyk, M., Minier, J.-P.: Full velocity-scalar PDF computation of heated channel flow with wall function approach. Phys. Fluids 15, 1220–1232 (2003)

    Article  ADS  Google Scholar 

  24. 24.

    Pozorski, J., Wacławczyk, M., Minier, J.-P.: Probability density function computation of heated turbulent channel flow with the bounded Langevin model. J. Turbul. 4, 011 (2003)

    Article  ADS  Google Scholar 

  25. 25.

    Pozorski, J., Wacławczyk, M., Minier, J.-P.: Scalar and joint velocity-scalar PDF modelling of near-wall turbulent heat transfer. Int. J. Heat Fluid Flow 25, 884–895 (2004)

    Article  Google Scholar 

  26. 26.

    Salvetti, M.V., Banerjee S.: A priori tests of a new dynamic subgrid-scale model for finite-difference large-eddy simulations. Phys. Fluids 11, 2831–2847 (1995)

    Article  ADS  Google Scholar 

  27. 27.

    Sagaut, P.: Large Eddy Simulation for Incompressible Flows. Springer, Berlin (1998)

    Google Scholar 

  28. 28.

    Sternel, D.C. (ed.): FASTEST-Manual. Technical Report, Fachgebiet Numerische Berechnungsverfahren im Maschinenbau, Technische Universität Darmstadt (2005)

  29. 29.

    Tiselj, I., Bergant, R., Mavko, B., Bajsić, I., Hetsroni, G.: DNS of turbulent heat transfer in channel flow with heat conduction in the solid wall. J. Heat Transfer 123, 849–857 (2001)

    Article  Google Scholar 

  30. 30.

    Valiño, L., Dopazo, C.: A binomial Langevin model for turbulent mixing. Phys. Fluids A 3, 3034–3037 (1991)

    MATH  Article  ADS  Google Scholar 

  31. 31.

    Wacławczyk, M., Pozorski, J., Minier, J.-P.: PDF computation of turbulent flows with a new near-wall model. Phys. Fluids 16, 1410–1422 (2004)

    Article  ADS  Google Scholar 

  32. 32.

    Wang, L., Dong, Y.-H., Lu, X.-Y.: Large eddy simulation of turbulent open channel flow with heat transfer at high Prandtl numbers. Acta Mech. 170, 227–246 (2004)

    MATH  Article  Google Scholar 

  33. 33.

    Xu, J., Pope, S.B.: Assessment of numerical accuracy in PDF/Monte Carlo methods for turbulent reacting flows. J. Comput. Phys. 152, 192–230 (1999)

    MATH  Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Wacławczyk.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wacławczyk, M., Pozorski, J. & Minier, JP. New Molecular Transport Model for FDF/LES of Turbulence with Passive Scalar. Flow Turbulence Combust 81, 235 (2008). https://doi.org/10.1007/s10494-007-9112-4

Download citation

Keywords

  • Filtered density function
  • Large eddy simulations
  • Near-wall flows