Skip to main content
Log in

Direct Numerical Simulations of Localised Forced Ignition in Turbulent Mixing Layers: The Effects of Mixture Fraction and Its Gradient

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The effects of mixture fraction value ξ and the magnitude of its gradient |∇ξ| at the ignitor location on the localised forced ignition of turbulent mixing layers under decaying turbulence is studied based on three-dimensional compressible Direct Numerical Simulations (DNS) with simplified chemistry. The localised ignition is accounted for by a spatial Gaussian power distribution in the energy transport equation, which deposits energy over a prescribed period of time. In successful ignitions, it is observed that the flame shows a tribrachial structure. The reaction rate is found to be greater in the fuel rich side than in stoichiometric and fuel-lean mixtures. Placing the ignitor at a fuel-lean region may initiate ignition, but extinction may eventually occur if the diffusion of heat from the hot gas kernel overcomes the heat release due to combustion. It is demonstrated that ignition in the fuel lean region may fail for an energy input for which self-sustained combustion has been achieved in the cases of igniting at stoichiometric and fuel-rich locations. It is also found that the fuel reaction rate magnitude is negatively correlated with density-weighted scalar dissipation rate in the most reactive region. An increase in the initial mixture fraction gradient at the ignition centre for the ignitor placed at stoichiometric mixture decreases the spreading of the burned region along the stoichiometric mixture fraction isosurface. By contrast, the mass of the burned region increases with an increase in the initial mixture fraction gradient at the ignition location, as for a given ignition kernel size the thinner mixing layer includes more fuel-rich mixture, which eventually makes the overall burning rate greater than that compared to a thicker mixing layer where relatively a smaller amount of fuel-rich mixture is engulfed within the hot gas kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Espí, C.V., Liñán, A.: Fast, non-diffusive ignition of a gaseous reacting mixture subject to a point energy source. Combust. Theory Model. 5, 485–498 (2001)

    Article  MATH  ADS  Google Scholar 

  2. Espí, C.V., Liñán, A.: Thermal-diffusive ignition and flame initiation by a local energy source. Combust. Theory Model. 6, 297–315 (2002)

    Article  ADS  Google Scholar 

  3. Champion, M., Deshaies, B., Joulin, G., Kinoshita, K.: Spherical flame initiation: theory versus experiments for lean propane–air mixtures. Combust. Flame 65, 319–337 (2002)

    Article  Google Scholar 

  4. He, L.: Critical conditions for spherical flame initiation in mixtures with high Lewis numbers. Combust. Theory Model. 4, 159–172 (2000)

    Article  MATH  ADS  Google Scholar 

  5. Ballal, D.R., Lefebvre, A.H.: Ignition and flame quenching in flowing gaseous mixtures. Proc. Roy. Soc. Lond. A. 357, 163–181 (1977)

    ADS  Google Scholar 

  6. Bradley, D., Lung, F.K-K.: Spark ignition and the early stages of turbulent flame propagation. Combust. Flame 69, 71–93 (1987)

    Article  Google Scholar 

  7. Dreizler, A., Lindenmaier, S., Maas, U., Hult, J., Alden M., Kaminski, C.F.: Characterisation of a spark ignition system by planar laser-induced fluorescence of OH at high repetition rates and comparison with chemical kinetic calculations. Appl. Phys. B 70, 287–294 (2000)

    Article  ADS  Google Scholar 

  8. Thiele, M., Warnatz, J., Dreizler, A., Lindenmaier, S., Schißl, R., Maas, U., Grant, A., Ewart, P.: Spark ignited hydrogen/air mixtures: two dimensional detailed modeling and laser based diagnostics. Combust. Flame 128, 74–87 (2002)

    Article  Google Scholar 

  9. Beduneau, J.-L., Ikeda, Y.: Application of laser ignition on laminar flame front investigation. Exp. Fluids 36, 108–113 (2004)

    Article  Google Scholar 

  10. Baum, M., Poinsot, T.: Effects of mean flow on premixed flame ignition. Combust. Sci. Technol. 106, 9–39 (1995)

    Article  Google Scholar 

  11. Catlin, C.A., Fairweather, M., Ibrahim, S.S.: Predictions of turbulent, premixed flame propagation in explosion tubes. Combust. Flame 102, 115–128 (1995)

    Article  Google Scholar 

  12. Poinsot, T., Candel, S., Trouvé, A.: Applications of direct numerical simulation to premixed turbulent combustion. Prog. Energy Combust. Sci. 21, 531–576 (1995)

    Article  Google Scholar 

  13. Thiele, M., Warnatz, J., Maas, U.: Geometrical study of spark ignition in two dimensions. Combust. Theory Model. 4, 413–434 (2000)

    Article  MATH  ADS  Google Scholar 

  14. Ballal, D.R., Lefebvre, A.: The influence of flow parameters on minimum ignition energy and quenching distance. Proc. Combust. Inst. 15, 1473–1481 (1975)

    Google Scholar 

  15. Ballal, D.R., Lefebvre, A.: Ignition and flame quenching of flowing heterogeneous fuel–air mixtures. Combust. Flame 35, 155–168 (1979)

    Article  Google Scholar 

  16. Ballal, D.R., Lefebvre, A.: A general model of spark ignition for gaseous and liquid fuel air mixtures. Proc. Combust. Inst. 18, 1737–1746 (1980)

    Google Scholar 

  17. Rashkovoksky, S.A.: Spark ignition in imperfectly mixed reactants. Proc. of 1st Mediterranean Combust. Symp. Anatalya, Turkey, pp. 1403–1411 (1999)

  18. Birch, A.D., Brown, D.R., Dodson, M.G.: Ignition probabilities in turbulent mixing flows. Proc. Combust. Inst. 18, 1775–1780 (1981)

    Google Scholar 

  19. Birch, A.D., Brown, D.R., Dodson, M.G., Thomas, J.R.: Studies of flammability in turbulent flows using lasers Raman spectroscopy. Proc. Combust. Inst. 17, 307–314 (1979)

    Google Scholar 

  20. Smith, M.T.E., Birch, A.D., Brown, D.R., Fairweather, M.: Studies of ignition and flame propagation in turbulent jets of natural gas, propane and a gas with high hydrogen content. Proc. Combust. Inst. 21, 1403–1408 (1986)

    Google Scholar 

  21. Alvani, R.E., Fairweather, M.: Ignition characteristics of turbulent jet flows. Trans. Ichem E 80, 917–923 (2002)

    Article  Google Scholar 

  22. Sheu, W.J., Sun, C.J.: Transient behaviours of ignition of premixed stagnation point flows with catalytic reactions. Int. J. Heat Mass Trans. 46, 577–587 (2003)

    Article  MATH  Google Scholar 

  23. Hilbert, R., Thevenin, D.: DNS of multibrachial structures with detailed chemistry and transport. Presented at the 9th International Conference on Numerical Combustion, Sorrento, Italy, paper no. 064, 2002

  24. Ray, J., Najm, H.N., McCoy, R.B.: Ignition front structure in a methane air jet. Presented at the 2nd Joint Meeting of the U.S. Section of the Combustion Institute, Oakland, California, paper no. 150, 2001

  25. Im, H.G., Chen, J.H.: Structure and propagation of triple flames in partially premixed hydrogen–air mixtures. Combust. Flame 119, 436–454 (1999)

    Article  Google Scholar 

  26. Chakraborty, N., Mastorakos, E., Cant, R.S.: Effects of turbulence on spark ignition in inhomogeneous mixtures: a direct numerical simulation (DNS) study. Combust. Sci. Technol. 179(1–2), 293–317 (2007)

    Article  Google Scholar 

  27. Richardson, E.S., Mastorakos, E.: Numerical investigation of spark ignition in a laminar methane–air counterflow. Combust. Sci. Technol. 179(1–2), 21–37 (2007)

    Article  Google Scholar 

  28. Chakraborty, N., Mastorakos, E.: Numerical investigation of edge flame propagation characteristics in turbulent mixing layers. Phys. Fluids 18, 105103, 1–18 (2006)

    Article  ADS  Google Scholar 

  29. Richardson, E., Chakraborty, N., Mastorakos, E.: Analysis of direct numerical simulations of ignition fronts in turbulent Non-premixed flames in the context of Conditional Moment Closure. Proc. Comb. Inst. 31, 1683–1690 (2007)

    Article  Google Scholar 

  30. Ahmed, S.F., Mastorakos, E.: Spark Ignition of lifted turbulent jet flames. Combust. Flame 146, 215–231 (2006)

    Article  Google Scholar 

  31. Ahmed, S.F., Balachandran, R., Mastorakos, E.: Measurements of ignition probability in turbulent non-premixed counterflow flames. Proc. Combust. Inst. 31, 1507–1513 (2007)

    Article  Google Scholar 

  32. Jiménez, C., Cuenot, B.: DNS study of stabilization of turbulent triple flames by hot gases. Proc. Combust. Inst. 31, 1649–1656 (2007)

    Article  Google Scholar 

  33. Ballal, D.R., Lefebvre, A.: Spark ignition of turbulent flowing gases/ Presented at the 15th Aerospace Sciences Meeting, AIAA Los Angeles, paper no. 77–185, 1977

  34. Mastorakos, E., Baritaud, T.A., Poinsot, T.J.: Numerical simulations of autoignition in turbulent mixing flows. Combust. Flame 109, 198–223 (1997)

    Article  Google Scholar 

  35. Bilger, R.W.: The structure of turbulent nonpremixed flames. Proc. Combust. Inst. 23, 475–488 (1988)

    Google Scholar 

  36. Jenkins, K.W., Cant, R.S.: DNS of turbulent flame kernels. In: C. Liu, L. Sakell, and T. Beautner (eds.) Proc. Second AFOSR Conf. on DNS and LES, pp. 192–202. Kluwer (1999)

  37. Poinsot, T., Lele, S.K.: Boundary conditions for direct simulation of compressible viscous flows. J. Comp. Phys. 101, 104–129 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. Wray, A.A.: Minimal storage time advancement schemes for spectral methods. Report No. MS 202 A-1, NASA Ames Research Center, California (1990)

  39. Rogallo, R.S.: Numerical experiments in homogeneous turbulence, NASA TM81315, NASA Ames Research Center, California (1981).

  40. Batchelor, G.K., Townsend, A.A.: Decay of turbulence in final period. Proc. Roy. Soc. Lond. A 194, 527–542 (1948)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  41. Yoo, C., Im, H.G.: Transient dynamics of edge flames in a laminar nonpremixed hydrogen–air counterflow. Proc. Combust. Inst. 30, 349–356 (2005)

    Article  Google Scholar 

  42. Poinsot, T., Echekki, T., Mungal, M.: A study of laminar flame tip and implications for turbulent premixed combustion. Combust. Sci. Technol. 81, 45–73 (1992)

    Article  Google Scholar 

  43. Chakraborty, N., Cant, S.: Unsteady effects of strain rate and curvature on turbulent premixed flames in an inflow–outflow configuration. Combust. Flame 137, 129–147 (2004)

    Article  Google Scholar 

  44. Gran, I.R., Echekki, T., Chen, J.H.: Negative flame speed in an unsteady 2-D premixed flame. Proc. Combust. Inst. 26, 211–218 (1996)

    Google Scholar 

  45. Hélie, J. Trouvé, A.: Turbulent flame propagation in partially premixed combustion. Proc. Combust. Inst. 27, 891–898 (1998)

    Google Scholar 

  46. Favier, V., Vervisch, L.: Edge flames and partially premixed combustion in diffusion flame quenching. Combust. Flame 125, 788–803 (2001)

    Article  Google Scholar 

  47. Ko, Y.S., Chung, S.H.: Propagation of unsteady tribrachial flames in laminar non-premixed jets. Combust. Flame 118, 151–163 (1999)

    Article  Google Scholar 

  48. Cessou, A., Maurey, C., Stepowski, D.: Parametric and statistical investigation of the behavior of a lifted flame over a turbulent free-jet structure. Combust. Flame 137, 458–477 (2004)

    Article  Google Scholar 

  49. Peters, N.: Turbulent Combustion, 1st ed. Cambridge University Press, UK (2000)

    MATH  Google Scholar 

  50. Pantano, C.: Direct simulation of non-premixed flame extinction in a methane–air jet with reduced chemistry. J. Fluid Mech. 514, 231–270 (2004)

    Article  MATH  ADS  Google Scholar 

  51. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. R.T. Edwards, Philadelphia, USA (2001)

    Google Scholar 

  52. Vedula, P., Yeung, P.K., Fox, R.O.: Dynamics of scalar dissipation in isotropic turbulence: A numerical and modelling study. J. Fluid Mech. 433, 29–60 (2001)

    MATH  ADS  Google Scholar 

  53. Swaminathan, N., Mahalingam, S., Kerr, R.M.: Structure of nonpremixed reaction zones in numerical isostropic turbulence. Theor. Comput. Fluid Dyn. 8, 201–218 (1996)

    Article  MATH  Google Scholar 

  54. Im, H.G., Chen, J.H., Law, C.K.: Ignition of hydrogen/air mixing layer in turbulent flows. Proc. Combust. Inst. 28, 1047–1056 (1998)

    Google Scholar 

  55. Dold, J.W.: Flame propagation in a nonuniform mixture: analysis of a slowly varying triple flame. Combust. Flame 76, 71–84 (1989)

    Article  Google Scholar 

  56. Hartley, L.J., Dold, J.W.: Flame propagation in a nonuniform mixture: analysis of a propagating triple-flame. Combust. Sci. Technol. 80, 23–46 (1991)

    Article  Google Scholar 

  57. Buckmaster, J.: Edge-flames. Pror. Energy Combust. Sci. 28, 435–475 (2002)

    Article  Google Scholar 

  58. Egolfopoulos, F.N., Law, C.K.: Chain mechanisms in the overall reaction orders in laminar flame propagation. Combust. Flame 80, 7–16 (1990)

    Article  Google Scholar 

  59. Fernández-Tazzaro, E., Sánchez, A., Liñán, A., Williams, F.A.: A simple one-step chemistry model for partially premixed hydrocarbon combustion. Combust. Flame 147, 32–38 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilanjan Chakraborty.

Additional information

Submitted as a full-length article to Flow Turbulence and Combustion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, N., Mastorakos, E. Direct Numerical Simulations of Localised Forced Ignition in Turbulent Mixing Layers: The Effects of Mixture Fraction and Its Gradient. Flow Turbulence Combust 80, 155–186 (2008). https://doi.org/10.1007/s10494-007-9110-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-007-9110-6

Keywords

Navigation