Skip to main content
Log in

Impact of Turbulent Flow and Mean Mixture Fraction Results on Mixing Model Behavior in Transported Scalar PDF Simulations of Turbulent Non-premixed Bluff Body Flames

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Numerical simulation results are presented for three turbulent jet diffusion flames, stabilized behind a bluff body (Sydney Flames HM1-3). Interaction between turbulence and combustion is modeled with the transported joint-scalar PDF approach. The focus of the study is on the impact of the quality of simulation results in physical space on the behavior of two micro-mixing models in composition space: the Euclidean Minimum Spanning Tree (‘EMST’) model and the modified Curl coalescence dispersion (‘CD’) model. Profiles of conditional means and variances of thermo-chemical quantities, conditioned on the mixture fraction, are discussed in the recirculation region and in the neck zone behind. The impact of the flow and mixing fields in physical space on the mixing model behavior in composition space is strong for the CD model and increases as the turbulence – chemistry interaction becomes stronger. The EMST conditional profiles, on the contrary, are hardly affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CD:

coalescence/dispersion

\( C_{\theta } \) :

micro-mixing model constant

D b :

bluff body diameter (m)

EMST:

Euclidean Minimum Spanning Tree

F :

probability density function

F :

mass density function

IP:

isotropization of production

ISAT:

in situ adaptive tabulation

J ik :

diffusive flux of species k in direction i (kg/(m2s))

K :

turbulent kinetic energy (m2/s2)

LRR:

Launder–Reece–Rodi

NL:

non-linear

PDF:

probability density function

R :

radial distance (m)

R b :

bluff body radius (m)

SM:

Reynolds stress model

S k :

chemical source term for species k (kg/s)

Sc t :

turbulent Schmidt number (–)

T :

temperature (K)

TR:

time scale ratio (–)

U I :

mean velocity component (m/s)

x I :

coordinate direction

X :

axial coordinate (m)

Y :

species mass fraction (–)

Γ t :

turbulent diffusivity (Pa s)

ɛ :

turbulent dissipation rate (m2/s3)

μ t :

turbulent viscosity

ρ :

density (kg/m3)

ψ :

composition space sample variable (–)

ξ :

mixture fraction (–)

References

  1. Pope, S.B.: Prog. Energy Combust. Sci. 11, 119–192 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  2. Dally, B.B., Masri, A.R., Barlow, R.S., Fiechtner, G.J., Fletcher, D.F.: Combust. Flame 114, 119–148 (1998)

    Article  Google Scholar 

  3. Dally, B.B., Fletcher, D.F., Masri, A.R.: Combust. Theory Model 2, 193–219 (1998)

    Article  MATH  ADS  Google Scholar 

  4. Janicka, J., Kolbe, W, Kollman, W: J. Non-Equil. Thermodyn. 4, 47–66 (1979)

    Article  MATH  ADS  Google Scholar 

  5. Subramaniam, S., Pope, S.B: Combust. Flame 115, 487–514 (1998)

    Article  Google Scholar 

  6. Subramaniam, S, Pope, S.B.: Combust. Flame 117(4), 732–754 (1999)

    Article  Google Scholar 

  7. Liu, K., Pope, S.B., Caughey, D.A.: Combust. Flame 141(1–2), 89–117 (2005)

    Article  Google Scholar 

  8. Mitaria, S., Riley, J.J., Kosály, G.: Phys. Fluids 17(047101), 1–15 (2005)

    Google Scholar 

  9. Ren, Z.Y., Pope, S.B.: Combust. Flame 136(1–2), 208–216 (2204)

    Google Scholar 

  10. Cao, R.R., Pope, S.B.: Combust. Flame 143, 450–470 (2005)

    Article  Google Scholar 

  11. Merci, B., Roekaerts, D., Naud, B.: Combust. Flame 144(3), 476–493 (2006)

    Article  Google Scholar 

  12. Merci, B., Roekaerts, D., Naud, B., Pope, S.B.: Combust. Flame 146(1–2), 109–130 (2006)

    Article  Google Scholar 

  13. Li, G., Naud, B., Roekaerts, D.: Flow Turbul. Combust. 70(1–4), 211–240 (2003)

    Article  MATH  Google Scholar 

  14. Merci, B., Dick, E.: Int. J. Heat Mass Transfer 46(3), 469–480 (2003)

    Article  MATH  Google Scholar 

  15. Smooke, M.D., Giovangigli, V.: Lect. Notes Physics 384, 1–47 (1991)

    Article  ADS  Google Scholar 

  16. Hossain, M., Jones, J.C., Malalasekera, W.: Flow Turbul. Combust. 67(3) 217–234 (2001)

    Article  MATH  Google Scholar 

  17. Pope, S.B.: Combust. Theory Model. 1, 41–63 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Launder, B.E., Reece, G.J., Rodi, W.: J. Fluid Mech. 68, 537–566 (1975)

    Article  MATH  ADS  Google Scholar 

  19. Merci, B., Vierendeels, J., Dick, E., Roekaerts, D., Peeters, T.W.J.: Combust. Flame 126(1–2), 1533–1556 (2001)

    Article  Google Scholar 

  20. Merci, B., Dick, E., De Langhe, C.: Combust. Flame 131(4) 465–468 (2002)

    Article  Google Scholar 

  21. Fox, R.O.: Computational Models for Turbulent Reacting Flows, Cambridge University Press, Cambridge, UK (2003).

    Google Scholar 

  22. Bilger, R.W., Starner, S.H., Kee, R.J.: Combust. Flame 80, 135–149 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart Merci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merci, B., Naud, B. & Roekaerts, D. Impact of Turbulent Flow and Mean Mixture Fraction Results on Mixing Model Behavior in Transported Scalar PDF Simulations of Turbulent Non-premixed Bluff Body Flames. Flow Turbulence Combust 79, 41–53 (2007). https://doi.org/10.1007/s10494-006-9063-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-006-9063-1

Key words

Navigation