Skip to main content
Log in

Swirling flow structures in electrostatic precipitator

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Stereoscopic digital Particle Image Velocimetry (PIV) has been used to make a three-dimensional flow mapping of a volume of approximately 0.1 × 0.1 × 0.15 m in a laboratory model electrostatic precipitator (ESP). The mapped volume covers about two unit cells determined by the 100 mm electrode spacing in the 0.2 × 0.2 × 1.0 m ESP test section of the negative corona, barbed wire, smooth-plate kind. The barbs act as corona fix points, yielding a three-dimensional electrostatic field. The induced large-scale secondary gas velocity structures in the form of unsteadily undulating axial rolls have been analyzed for swirlnumber and location of instantaneous swirl center in 11 axial planes. The flow possesses high levels of turbulence and axial vorticity. Measured particle velocities are corrected for electrical drift to produce gas velocities. Subsequently experimental results are compared to Large Eddy Simulation (LES) results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adrian, R.J., Particle-imaging techniques for experiments in fluid mechanics. Ann. Rev. Fluid Mech. 23 (1991) 261–304.

    Article  ADS  Google Scholar 

  2. Adrian, R.J. and Yao, C.-S., Pulsed laser technique application to liquid and gaseous flows and the scattering power of seed materials. Appl. Opt. 24(1) (1985) 44–52.

    Article  ADS  Google Scholar 

  3. Armendariz, A.J. and Leith, D., Concentration measurement and counting efficiency for the aerodynamic particle sizer 3320. J. Aerosol Sci. 33 (2002) 133–148.

    Google Scholar 

  4. Cochet, R., Théorie de la charge des particules submicroniques dans les champs électriques ionises; vitesse de précipitation de ces particules. Acad. Sci. C. R. Hebdomadaires des Séances 243 (1956) 243–246.

    Google Scholar 

  5. Davidson, J.H., Particulate space charge induced turbulence in gas-solid flows with an applied electric field. ASME Fluids Engrg. Div. 76 (1989) 65–71.

    Google Scholar 

  6. Davidson, J.H. and Shaughnessy, E.J., Turbulence generation by electric body forces. Exp. Fluids 4 (1986) 17–26.

    Article  Google Scholar 

  7. Graftieaux, L., Michard, M. and Grosjean, N., Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas. Sci. Technol. 12 (2001) 1422–1429.

    Article  ADS  Google Scholar 

  8. Kallio, G.A. and Stock, D.E., Interaction of electrostatic and fluid dynamic fields in wire-plate electrostatic precipitators. J. Fluid Mech. 240 (1992) 133–166.

    ADS  Google Scholar 

  9. Lama, W.L. and Gallo, C.F., Systematic study of the electris characteristic of the -Trichel-current pulses from negative needle to plane coronas. J. Appl. Phys. 45 (1974) 103–113.

    Article  ADS  Google Scholar 

  10. Larsen, P.S. and S-rensen, S.K., Effect of secondary flows and turbulence on electrostatic precipitator efficiency. Atmos. Env. 18 (1984) 1963–1967.

    Google Scholar 

  11. Lê, T.H., Troff, B., Sagaut, P., Dang-Tran, K. and Phuoc, L.T., PEGASE: A Navier-Stokes solver for direct numerical simulation of incompressible flows. Internat. J. Numer. Methods Fluids 24 (1997) 833–861.

    MathSciNet  MATH  ADS  Google Scholar 

  12. Lenormand, E., Sagaut, P., Phuoc, L.T. and Comte, L.P., Subgrid-scale models for large-eddy simulations of compressible wall bounded flows. AIAA J. 38 (2000) 1340–1350.

    Article  ADS  Google Scholar 

  13. Leonard, G.L., Mitchner, M. and Self, S.A., An experimental study of the electrohydrodynamic flow in electrostatic precipitators. J. Fluid Mech. 127 (1983) 123–140.

    ADS  Google Scholar 

  14. Lide, D.R. (ed.), Handbook of Chemistry and Physics, 76th edn. National Institute of Standards and Technology (1995) pp. 12–52.

  15. Prasad, A.K., Stereoscopic particle image velocimetry. Exp. Fluids 29 (2000) 103–116.

    Article  Google Scholar 

  16. Riehle, C., Basic and theoretical operation of ESPs. In: Parker, K.R. (ed.), Applied Electrostatic Precipitation. Blackie Academic & Professional (1997) pp. 85–88.

  17. Sagaut, P., Montreuil, E. and Labbe, O., Assessment of some self-adaptive SGS models for wall bounded flows. Aerosp. Sci. Tech. 6 (1999) 335–344.

    Google Scholar 

  18. Soldati, A. and Banerjee, S., Turbulence modification by large-scale organized electrohydrodynamic flows. Phys. Fluids 10(7) (1998) 1742–1756.

    Article  ADS  Google Scholar 

  19. Ullum, T., Larsen, P.S. and Özcan, O., Three-dimensional flow and turbulence structure in electrostatic precipitator by stereo PIV. Exp. Fluids 36 (2004) 91–99.

    Article  Google Scholar 

  20. Van de Hulst, H.C., Light Scattering by Small Particles. Dover Publications, Oxford (1981).

    Google Scholar 

  21. Westerweel, J., Fundamentals of digital particle image velocimetry. Meas. Sci. Technol. 8 (1997) 1379–1392.

    Article  ADS  Google Scholar 

  22. Yamamoto, T. and Velkoff, H.R., Electrohydrodynamics in an electrostatic precipitator. J. Fluid Mech. 108 (1981) 1–18.

    ADS  Google Scholar 

  23. Zamany, J., Modeling of particle transport in commercial electrostatic precipitators. Ph.D. Thesis, Technical University of Denmark (1992).

  24. Zamany, J., Influence of charge diffusion on the induced electro-hydrodynamic field inside electrostatic precipitators. Inst. Phys. Conf. Ser. 143 (1995) 69–74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ullum, T., Larsen, P.S. Swirling flow structures in electrostatic precipitator. Flow Turbulence Combust 73, 259–275 (2005). https://doi.org/10.1007/s10494-005-6772-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-005-6772-9

Key words

Navigation