Skip to main content
Log in

Non-Isotropic Length Scales During the Compression Stroke of a Motored Piston Engine

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

For the case of axial compression the two-point velocity correlation equations of axisymmetric homogeneous turbulence are derived. Appropriate integrations then lead to equations for the components of the Reynolds stress tensor as well as to those for the two independent integral length-scales characterizing axisymmetric homogeneous turbulence. These equations contain a certain number of empirical constants. Values for these constants are taken from the literature, or were adjusted from the present data.

The resulting model is validated using data from a motored piston engine. The flow field, which has negligible swirl and tumble, has been measured using particle image velocimetry (PIV). Since turbulence is axisymmetric and homogeneous in the counter region, two-dimensional PIV provides the time history of the axial and radial length-scales. The experimental data are compared with the mathematical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oberlack, M., Non-isotropic dissipation in non-homogeneous turbulence, J. Fluid Mech. 350 (1997) 351–374.

    Article  Google Scholar 

  2. Batchelor, G.K., The theory of axisymmetric turbulence, Proc. Roy. Soc. A 186 (1946) 480–502.

    Google Scholar 

  3. Chandrasekhar, S., The theory of axisymmetric turbulence, Phil. Trans. Roy. Soc. A 242 (1950) 557–577.

    Google Scholar 

  4. Lindborg, E., Kinematics of homogeneous axisymmetric turbulence, J. Fluid Mech. 302 (1995) 179–201.

    Google Scholar 

  5. Hüppelshäuser, Experimentelle Untersuchung der Strömung und des Wärmeübergangs im Kolbenmotor. PhD thesis at RWTH-Aachen, VDI Dusseldorf (1992).

  6. Hong, C.W. and Tarng, S.D., Direct measurement and computational analysis of turbulence length scales of a motored engine, Experimental Thermal and Fluid Science 16 (1998) 277–285.

    Article  Google Scholar 

  7. Lorenz, M. and Prescher, K., Cycle Resolved LDV Measurements on a Fired SI-Engine at High Data Rates Using a Conventional Modular LDV–System. SAE 900054 (1990).

  8. Adrian, R.J., Developement of Pulsed Laser Velocimetry for measurement of Fluid Flow. 8th Biennial Symposium on Turbulence University of Missouri–Rolla (1984).

  9. Meynard, R., Instantaneous velocity field measurements in unsteady gas flow by speckle velocimetry, Applied Optics 22 (1983) 535–540.

    Google Scholar 

  10. Reuss, D.L., Adrian, R.J., Landreth, C.C., French, D.T. and Fansler, T.D., Instantaneous Planar Measurements of Velocity and Large-Scale Vorticity and Strain Rate in an Engine Using Particle-Image Velocimetry. SAE 890616 (1989).

  11. Rouland, E., Trinite, M., Dionnet, F., Floch, A. and Ahmed, A., Particle Image Velocimetry Measurements in a High Tumble Engine for In-Cylinder Flow Structure Analysis. SAE 972831 (1997).

  12. Rotta, J.C., Turbulente Strömungen. B.G. Teubner Stuttgart (1972).

  13. Breuer, S., Experimentelle und theoretische Untersuchung achsensymmetrischer Turbulenz während der Kompressionsphase in einer Kolbenmaschine. PhD thesis at the RWTH-Aachen, Couvellier Verlag Göttingen (2000).

  14. de Kármán, T. and Howarth, L., On the statistical theory of isotropic turbulence, Proc. Roy. Soc. A 164 (1938) 192–215.

    Google Scholar 

  15. Oberlack, M., Herleitung und Lösung einer Längenmaß- und Dissipations-Tensorgleichung für turbulente Strömungen. PhD thesis, RWTH-Aachen, VDI Düsseldorf (1994).

  16. Sandri, G. and Cerasoli, C., Fundamental research in turbulent modeling, ARAP Rep. 438 (1981).

  17. Jischa, M., Konvektiver Impuls-, Wärme und Stoffaustausch. Vieweg-Verlag Braunschweig/Wiesbaden (1982).

    Google Scholar 

  18. Holtorf, J., Messung zweidimensionaler Geschwindigkeitsfelder am Beispiel einer Motorinnenströmung. PhD thesis at RWTH-Aachen, VDI Düsseldorf (1992).

  19. Wirth, M., Die turbulente Flammenausbreitung im Ottomotor und ihre charakteristischen Längenskalen. PhD thesis at the RWTH-Aachen, VDI Düsseldorf (1993).

  20. Willert, C.E. and Gharib, M., Digital particle image velocimetry, Experiments in Fluids 10 (1993) 181–193.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Oberlack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breuer, S., Oberlack, M. & Peters, N. Non-Isotropic Length Scales During the Compression Stroke of a Motored Piston Engine. Flow Turbulence Combust 74, 145–167 (2005). https://doi.org/10.1007/s10494-005-5457-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-005-5457-8

Key words

Navigation