Skip to main content
Log in

Plant, pest and predator interplay: tomato trichomes effects on Tetranychus urticae (Koch) and the predatory mite Typhlodromus (Anthoseius) recki Wainstein

  • Research
  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Trichomes are well-known efficient plant defense mechanisms to limit arthropod herbivory, especially in Solanaceae. The present study aims to evaluate the impact of trichome types on the development, survival and dispersal of Tetranychus urticae, and the phytoseiid predatory mite Typhlodromus (Anthoseius) recki. Six Solanum lycopersicum cultivars and two wild Solanum species, S. cheesmaniae and S. peruvianum, presenting contrasting densities and types of trichomes, were considered. Cultivars and species were characterized by counting each trichome type on leaves, petioles and stems. Mites stuck on petiole and stem and alive mites on the leaflet used for mite release and in the whole plant were counted three weeks after T. urticae plant infestation. Tetranychus urticae settlement and dispersal were differently affected by trichomes. Trichome types V and VI did not affect settlement and dispersal, whereas trichome types I and IV on the petiole had the highest impacton mites. Trichomes on leaves slightly affected mite establishment, there appears to be a repellent effect of trichome types I and IV. The low densities of both T. urticae and its predator detected for the cv. Lancaster could not be clearly associated to the trichome types here considered. The predator did not seem to be affected by plant characteristics, but rather by T. urticae numbers on the plant. The trichome traits unfavorable to T. urticae, did not affect the predator which showed high efficiency to control this pest on all the plant genotypes considered, but at a favorable predator:prey ratio (1:1). Altogether, these results are encouraging for the use of T. (A.) recki as a biological control agent of T. urticae regardless of the trichome structure of the tomato cultivars, but other conditions should be tested to conclude on practical implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  • Alba JM, Montserrat M, Fernández-Muñoz R (2009) Resistance to the two-spotted spider mite (Tetranychus urticae) by acylsucroses of wild tomato (Solanum pimpinellifolium) trichomes studied in a recombinant inbred line population. Exp Appl Acarol 47:35–47

    Article  PubMed  Google Scholar 

  • Andrade MC, da Silva AA, Neiva IP, Oliveira IRC, De Castro EM, Francis DM, Maluf WR (2017) Inheritance of type IV glandular trichome density and its association with whitefly resistance from Solanum galapagense accession LA1401. Euphytica 213:52. https://doi.org/10.1007/s10681-016-1792-1

    Article  CAS  Google Scholar 

  • Bar M, Shtein A (2019) Plant trichomes and the biomechanics of defense in various systems, with Solanaceae as a model. Botany 97(12):651–660. https://doi.org/10.1139/cjb-2019-0144

    Article  CAS  Google Scholar 

  • Boller EF (1984) Eine einfache Ausschwemm-Methode zur schnellen Erfassung von Raubmilben, Thrips und anderen Kleinarthropoden im Weinbau. Schweizerische Zeitschrift Für Obst- Und Weinbau 12:16–17

    Google Scholar 

  • Cantelo WW, Boswell AL, Argauer RJ (1974) Tetranychus mite repellent in tomato. Environ Entomol 3:128–130

    Article  Google Scholar 

  • Carter CD, Snyder JC (1985) Mite responses in relation to trichomes of Lycopersicon esculentum x L. hirsutum F2 hybrids. Euphytica 34:177–185

    Article  Google Scholar 

  • Castañé C, Alomar O, Rocha A, Vila E, Riudavets J (2022) Control of Aculops lycopersici with the predatory mite Transeius montdorensis. Insects 13:1116. https://doi.org/10.3390/insects13121116

    Article  PubMed  PubMed Central  Google Scholar 

  • Cedola CV, Sánchez NE, Liljesthröm GG (2001) Effect of tomato leaf hairiness on functional and numerical response of Neoseiulus californicus (Acari: Phytoseiidae). Exp Appl Acarol 25:819–831

    Article  CAS  PubMed  Google Scholar 

  • Channaryappa SG, Muniyappa V, Frist RH (1992) Resistance of Lycopersicon species to Bemisia tabaci, a tomato leaf curl virus vector. Can J Bot 70:2184–2192

    Article  Google Scholar 

  • Chatzivasileiadis EA, Boon JJ, Sabelis MW (1999) Accumulation and turnover of 2-tridecanone in Tetranychus urticae and consequences for resistance of wild and cultivated tomatoes. Exp Appl Acarol 23:1011–1021

    Article  CAS  PubMed  Google Scholar 

  • Davidson MM, Nielsen M-C, Butler RC, Silberbauer RB (2016) Prey consumption and survival of the predatory mite, Amblydromalus limonicus, on different prey and host plants. Biocontrol Sci 26:722–726

    Article  Google Scholar 

  • Dias DM, Resende JTV, Faria MV, Camargo LKP, Lima IP (2013) Selection of processing tomato genotypes with high acyl sugar content that are resistant to the tomato pinworm. Genet Mol Res 12:381–389. https://doi.org/10.4238/2013.February.8.2

    Article  CAS  PubMed  Google Scholar 

  • Drukker B, Janssen A, Ravensberg W, Sabelis MW (1997) Improved control capacity of the mite predator Phytoseiulus persimilis (Acari: Phytoseiidae) on tomato. Exp Appl Acarol 21:306–308

    Article  Google Scholar 

  • Economou L, Lykouressis D, Barbetaki A (2006) Time allocation of activities of two heteropteran predators on the leaves of three tomato cultivars with variable glandular trichome density. Environ Entomol 35:387–393. https://doi.org/10.1603/0046-225X-35.2.387

    Article  Google Scholar 

  • Ersin F, Turanli F, Cakmak I (2021) Development and life history parameters of Typhlodromus recki (Acari: Phytoseiidae) feeding on Tetranychus urticae (Acari: Tetranychidae) at different temperatures. Syst Appl Acarol 26:496–508. https://doi.org/10.11158/saa.26.2.12

    Article  Google Scholar 

  • Fridman E, Wang J, Iijima Y, Froehlich JE, Gang DR, Ohlrogge J, Pichersky E (2005) Metabolic, genomic, and biochemical analyses of glandular trichomes from the wild tomato species Lycopersicon hirsutum identify a key enzyme in the biosynthesis of methylketones. Plant Cell 17(4):1252–1267. https://doi.org/10.1105/tpc.104.029736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Futuyma DJ, Agrawal AA (2009) Macroevolution and the biological diversity of plants and herbivores. Proc Natl Acad Sci USA 106:18054–18061. https://doi.org/10.1073/pnas.0904106106

    Article  PubMed  PubMed Central  Google Scholar 

  • Gard B, Bardel A, Douin P, Perrin B, Tixier M-S (2024) Laboratory and field studies to assess the efficacy of the predatory mite Typhlodromus (Anthoseius) recki (Acari: Phytoseiidae) introduced via banker plants to control the mite pest Aculops lycopersici (Acari: Eriophyidae) on tomato. BioControl Accepted

  • Gatehouse JA (2002) Plant resistance towards insect herbivores: a dynamic interaction. New Phytol 156:145–169. https://doi.org/10.1046/j.1469-8137.2002.00519.x

    Article  CAS  PubMed  Google Scholar 

  • Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3:408–414. https://doi.org/10.1038/nchembio.2007.5

    Article  CAS  PubMed  Google Scholar 

  • Glas JJ, Schimmel BC, Alba JM, Escobar-Bravo R, Schuurink RC, Kant MR (2012) Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. Int J Mol Sci 13(12):17077–17103. https://doi.org/10.3390/ijms131217077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonçalves LD, Maluf WR, Cardoso MG, Resende JTV, Castro EM, Santos NM, do Rodrigues NI, Ventura FM (2006) Relação entre zingibereno, tricomas foliares e repelência de tomateiros a Tetranychus evansi. Pesqui Agropecu Bras 41:267–273. https://doi.org/10.1590/S0100-204X2006000200011

    Article  Google Scholar 

  • Good DE, Snyder JC (1988) Seasonal variation of leaves and mite resistance of Lycopersicon interspecific hybrids. HortScience 23:891–894

    Article  Google Scholar 

  • Gurr GM, McGrath D (2002) Foliar pubescence and resistance to potato moth, Phthorimaea operculella, in Lycopersicon hirsutum. Entomol Experim Appl 103:35–41

    Article  CAS  Google Scholar 

  • Hanley ME, Lamont BB, Fairbanks MM, Rafferty CM (2007) Plant structural traits and their role in antiherbivore defense. Perspec Plant Ecol Evol Syst 8:157–178. https://doi.org/10.1016/j.ppees.2007.01.001

    Article  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  CAS  PubMed  Google Scholar 

  • Karabourniotis G, Liakopoulos G, Nikolopoulos D, Bresta A (2020) Protective and defensive roles of non-glandular trichomes against multiple stresses: structure–function coordination. J for Res 31:1–12. https://doi.org/10.1007/s11676-019-01034-4

    Article  CAS  Google Scholar 

  • Karban R, Agrawal A, Mangel M (1997) The benefits of induced defenses against herbivores. Ecology 78:1351–1355. https://doi.org/10.1890/00129658(1997)078[1351:TBOIDA]2.0.CO;2

    Article  Google Scholar 

  • Kennedy GG (2003) Tomato, pests, parasitoids, and predators: tritrophic interactions involving the genus Lycopersicon. Annu Rev Entomol 48:51–72

    Article  CAS  PubMed  Google Scholar 

  • Keskin N, Kumral NA (2015) Screening tomato varietal resistance against the two-spotted spider mite [Tetranychus urticae (Koch)]. Intern J Acarol 41:300–309

    Article  Google Scholar 

  • Kortbeek RWJ, Galland MD, Muras A, van der Kloet FM, André B, Heilijgers M, van Hijum SAFT, Haring MA, Schuurink RC, Bleeker PM (2021) Natural variation in wild tomato trichomes; selecting metabolites that contribute to insect resistance using a random forest approach. BMC Plant Biol 21(1):315. https://doi.org/10.1186/s12870-021-03070-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroumova AB, Wagner GJ (2003) Different elongation pathways in the biosynthesis of acyl groups of trichome exudate sugar esters from various solanaceous plants. Planta 216:1013–1021

    Article  CAS  PubMed  Google Scholar 

  • Lucini T, Marcos VF, Cristhiane R, Juliano TVR, João RFO (2015) Acylsugar and the role of trichomes in tomato genotypes resistance to Tetranychus urticae. Arthropod-Plant Interact 9:45–53

    Article  Google Scholar 

  • Luckwill LC (1943) The genus Lycopersicon: An historical biological and taxanomic survey of the wild and cultivated tomatoes. Aberdeen University Press, Aberdeen, p 44

    Google Scholar 

  • Maluf WR, Campos GA, Cardoso MDG (2001) Relationships between trichome types and spider mite (Tetranychus evansi) repellence in tomatoes with respect to foliar zingiberene contents. Euphytica 121:73–80

    Article  Google Scholar 

  • McDowell ET, Kapteyn J, Schmidt A, Li C, Kang J, Descour A, Shi F, Larson M, Schilmiller A, An L, Jones A, Pichersky E, Soderlund CA, Gang DR (2011) Comparative functional genomic analysis of Solanum glandular trichome types. Plant Physiol 155:524–539

    Article  CAS  PubMed  Google Scholar 

  • McMurtry JA, Scriven GT (1965) Insectary production of phytoseiid mites. J Econ Entomol 58:282–284. https://doi.org/10.1093/jee/58.2.282

    Article  Google Scholar 

  • McMurtry JA, Moraes GJD, Sourassou NF (2013) Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Syst Appl Acarol 18:297–320. https://doi.org/10.11158/saa.18.4.1

    Article  Google Scholar 

  • Nihoul P (1994) Phenology of glandular trichomes related to entrapment of Phytoseiulus persimilis A.-H. in the glasshouse tomato. J Hort Sci 69(5):783–789

    Article  Google Scholar 

  • Oliveira JRF, de Resende JTV, Maluf WR, Lucini T, de Lima Filho RB, de Lima IP, Nardi C (2018) Trichomes and allelochemicals in tomato genotypes have antagonistic effects upon behavior and biology of Tetranychus urticae. Front Plant Sci. https://doi.org/10.3389/fpls.2018.01132

    Article  PubMed  PubMed Central  Google Scholar 

  • Onyambus GK, Maranga RO, Gitonga LM, Knapp M (2011) Host plant resistance among tomato accessions to the spider mite Tetranychus evansi in Kenya. Exp Appl Acarol 54:385–393

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Ribeiro B, da Silva AL, Dutta B, Chong JH, Mutscher MA, Schmidt JA (2023) Acylsugar tomato lines suppress whiteflies and Amblyseius swirskii establishment. Entomol Exp Appl Online First. https://doi.org/10.1111/eea.13342

    Article  Google Scholar 

  • Paspati A, Rambla Nebot JL, López-Gresa MP, Arbona V, Gómez-Cadenas A, Granell Richart A, González-Cabrera J, Urbaneja A (2021) Tomato trichomes are deadly hurdles limiting the establishment of Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae). Biol Contr 157:1–9. https://doi.org/10.1016/j.biocontrol.2021.104572

    Article  CAS  Google Scholar 

  • Peiffer M, Tooker JF, Luthe DS, Felton GW (2009) Plants on early alert: glandular trichomes as sensors for insect herbivores. New Phytol 184:644–656. https://doi.org/10.1111/j.1469-8137.2009.03002.x

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Rakha M, Bouba N, Ramasamy S, Regnard J-L, Hanson P (2017) Evaluation of wild tomato accessions (Solanum spp.) for resistance to two-spotted spider mite (Tetranychus urticae Koch) based on trichome type and acylsugar content. Genet Res Crop Evol 64:1011–1022. https://doi.org/10.1007/s10722-016-0421-0

    Article  CAS  Google Scholar 

  • Sato MM, Moraes GJ, Haddad ML, Wekesa VW (2011) Effect of trichomes on the predation of Tetranychus urticae (Acari: Tetranychidae) by Phytoseiulus macropilis (Acari: Phytoseiidae) on tomato, and the interference of webbing. Exp Appl Acarol 54:21–32. https://doi.org/10.1007/s10493-011-9426-8

    Article  PubMed  Google Scholar 

  • Savi PJ, Moraes GJ, Boiça AL Jr, Melville CC, Carvalho RF, Lourençao AL, Andrade DJ (2019) Impact of leaflet trichomes on settlement and oviposition of Tetranychus evansi (Acari: Tetranychidae) in African and South American tomatoes. Syst Appl Acarol 24(12):2559–2576

    Google Scholar 

  • Simmons AT, Gurr GM (2005) Trichomes of Lycopersicon species and their hybrids: effects on pests and natural enemies. Agric Forest Entomol 7:265–276

    Article  Google Scholar 

  • Snyder JC, Carter CD (1984) Leaf trichomes and resistance of Lycopersicon hirsutum and Lycopersicon esculentum to spider mites. J Am Soc Hortic Sci 109:837–843

    Article  Google Scholar 

  • Snyder JC, Simmons AM, Tracker RR (1998) Attractancy and oviposition response of type IV trichome density on leaves of Lycopersicon hirsutum grown in three day-lenght regimes. J Entomol Sci 33:270–281

    Google Scholar 

  • Tixier M-S, Douin M, Kreiter S (2020a) Phytoseiidae (Acari: Mesostigmata) on Plants of the Family Solanaceae: Results of a Survey in the South of France and a Review of World Biodiversity. Exp Appl Acarol 81:357–388

    Article  PubMed  Google Scholar 

  • Tixier M-S, Douin M, Rocio O, Gonzalez L, Pount B, Kreiter S (2020b) Distribution and biological features of Typhlodromus (Anthoseius) recki (Acari: Phytoseiidae) on Tetranychus urticae, T. evansi (Acari: Tetranychidae) and Aculops lycopersici (Acari: Eriophyidae). Acarologia 60:684–697. https://doi.org/10.24349/acarologia/20204396

    Article  Google Scholar 

  • Treutter D (2006) Significance of flavonoids in plant resistance: A review. Environ Chem Lett 4:147–157. https://doi.org/10.1007/s10311-006-0068-8

    Article  CAS  Google Scholar 

  • Van Haren R, Steenhuis M, Sabelis MW, De Ponti O (1987) Tomato stem trichomes and dispersal success of Phytoseiulus persimilis relative to its prey Tetranychus urticae. Exp Appl Acarol 3:115–121

    Article  Google Scholar 

  • van Houten YM, Glas JJ, Hoogerbrugge H, Rothe J, Bolckmans KJ, Simoni S, van Arkel J, Alba JM, Kant MR, Sabelis MW (2013) Herbivory-associated degradation of tomato trichomes and its impact on biological control of Aculops lycopersici. Exp Appl Acarol 60:127–138. https://doi.org/10.1007/s10493-012-9638-6

    Article  PubMed  Google Scholar 

  • Watts S, Kaur S, Kariyat R (2023) Revisiting plant fitness trade-off hypothesis using Solanum as a model genus. Front Ecol Evol 10:1094961. https://doi.org/10.3389/fevo.2022.1094961

    Article  Google Scholar 

  • Weston PA, Johnson DA, Burton HT, Snyder JC (1989) Trichome secretion composition, trichome densities, and Spider Mite resistance of ten accessions of Lycopersicon hirsutum. J Amer Soc Hort Sci 114:492–498

    Article  Google Scholar 

  • Zhang Y, Song H, Wang X, Zhou X, Zhang K, Chen X, Liu J, Han J, Wang A (2020) The roles of different types of trichomes in tomato resistance to cold, drought, whiteflies, and Botrytis. Agronomy 10:411. https://doi.org/10.3390/agronomy10030411

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 773902 — SuperPests. We thanks Hélène Burck, Unit Genetics and Breeding of Fruits and Vegetables (GAFL), INRAE Avignon, France; Eric Pedebas, Le Tomatologue, Maurin-Lattes, France; and Marta Montserrat, Institute for Mediterranean and Subtropical Horticulture “La Mayora”, Spain, for providing tomato accessions seeds for experiments. Finally, we thank the two reviewers for their valuable comments, which allowed us to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by LT and MST. The first draft of the manuscript was written by LT and MSTand all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tixier Marie-Stéphane.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 432 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, T., Denise, N., Philippe, A. et al. Plant, pest and predator interplay: tomato trichomes effects on Tetranychus urticae (Koch) and the predatory mite Typhlodromus (Anthoseius) recki Wainstein. Exp Appl Acarol (2024). https://doi.org/10.1007/s10493-024-00917-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10493-024-00917-4

Keywords

Navigation