Skip to main content
Log in

A multiplex direct PCR method for the rapid and accurate discrimination of three species of spider mites (Acari: Tetranychidae) in fruit orchards in Beijing

  • Research
  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Spider mites (Acari: Tetranychidae) are polyphagous pests of economic importance in agriculture, among which the two-spotted spider mite Tetranychus urticae Koch has spread widely worldwide as an invasive species, posing a serious threat to fruit tree production in China, including Beijing. The hawthorn spider mite, Amphitetranychus viennensis Zacher, is also a worldwide pest of fruit trees and woody ornamental plants. The cassava mite, Tetranychus truncatus Ehara, is mainly found in Asian countries, including China, Korea and Japan, and mainly affects fruit trees and agricultural crops. These three species of spider mites are widespread and serious fruit tree pests in Beijing. Rapid and accurate identification of spider mites is essential for effective pest and plant quarantine in Beijing orchard fields. The identification of spider mite species is difficult due to their limited morphological characteristics. Although the identification of insect and mite species based on PCR and real-time polymerase chain reaction TaqMan is becoming increasingly common, DNA extraction is difficult, expensive and time-consuming due to the minute size of spider mites. Therefore, the objective of this study was to establish a direct multiplex PCR method for the simultaneous identification of three common species of spider mites in orchards, A. viennensis, T. truncatus and T. urticae, to provide technical support for the differentiation of spider mite species and phytosanitary measures in orchards in Beijing. Based on the mitochondrial cytochrome c oxidase subunit I (COI) of the two-spotted spider mite and the cassava mite and the 18S gene sequence of the hawthorn spider mite as the amplification target, three pairs of specific primers were designed, and the primer concentrations were optimized to establish a direct multiplex PCR system for the rapid and accurate discrimination of the three spider mites without the need for DNA extraction and purification. The method showed a high sensitivity of 0.047 ng for T. truncatus and T. urticae DNA and 0.0002 ng for A. viennensis. This method eliminates the DNA extraction and sequencing procedures of spider mite samples, offers a possibility for rapid monitoring of multiple spider mites in an integrated microarray laboratory system, reducing the time and cost of leaf mite identification and quarantine monitoring in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data is made available in tables in the main text/manuscript and in the Supplementary Materials file.

Code availability

Not Applicable.

References

  • Al-Ajmi RA, Ayaad TH, Al-Enazi M, Al-Qahtani AA (2015) Molecular and Morphological Identification of Local Sand Fly Species (Diptera: Psychodidae) in Saudi Arabia. Pak J Zool 47(6):1625–1630

    CAS  Google Scholar 

  • Amini S, Hosseini R (2016) A multiplex polymerase chain reaction based method for rapid identification of two species of the genus Scolytus Geoffroy (Col: Curculionidae: Scolytinae) in Iran. J Entomol Acarol Res 48(1):11–15. https://doi.org/10.4081/jear.2016.5181

    Article  Google Scholar 

  • Arimoto M, Satoh M, Uesugi R, Osakabe M (2013) PCR-RFLP Analysis for Identification of Tetranychus Spider Mite Species (Acari: Tetranychidae). J Econ Entomol 106(2):661–668. https://doi.org/10.1603/EC12440

    Article  CAS  PubMed  Google Scholar 

  • Ben-David T, Melamed S, Gerson U, Morin S (2007) ITS2 sequences as barcodes foridentifying and analyzing spider mites (Acari: Tetranychidae). Exp Appl Acarol 41(3):169–181. https://doi.org/10.1007/s10493-007-9058-1

    Article  CAS  PubMed  Google Scholar 

  • Bolland HR, Gutierrez J, Flechtmann CH (1998) World catalogue of the spider mite family (Acari: Tetranychidae). Brill, Netherlands

    Google Scholar 

  • Brengues C, Ferré JB, Le Goff G, Lami P, Pratlong F, Pasteur N, Robert V (2014) A multiplex PCR to differentiate the two sibling species of mosquitoes Ochlerotatus detritus and Oc. coluzzii and evidence for further genetic heterogeneity within the Detritus complex. Infect Genet Evol 28:676–680. https://doi.org/10.1016/j.meegid.2014.07.010

    Article  CAS  PubMed  Google Scholar 

  • Cai SH, Cheng LS (2003) Disease risks of importing grass seeds and prevention measures. Chin J Trop Agr 02:68–74

    Google Scholar 

  • Chen ZJ, Zhang SL, Zhang MR (1999) On the bionomics and ecological control tactics of Tetranychus truncatus Ehara in corn field in Shaanxi Province [China]. Acta Phytol Sin 26:7–12

    CAS  Google Scholar 

  • Cheng LS (1999) Attention should be paid to the spread of Tetranychus urticae Koch in China. Plant Prot 25(4):55–56

    Google Scholar 

  • Chen DS, Dai JQ (2018) Characterization and phylogenetic analysis of the mitochondrial genome of hawthorn spider mite. J Environ Entomol 40(5):10

    CAS  Google Scholar 

  • Chen XY, Zhou ZY, Li JH (1996) Studies on the bionomics and control of Tetranychus truncatus Ehara. Sci Silvae Sinicae 32(2):144–149

    Google Scholar 

  • Choi O, Park JJ, Kim J (2016) Tetranychus urticae (Acari: Tetranychidae) transmits Acidovorax citrulli, causal agent of bacterial fruit blotch of watermelon. Exp Appl Acarol 69(4):445–451. https://doi.org/10.1007/s10493-016-0048-z

    Article  CAS  PubMed  Google Scholar 

  • Cruickshank RH, Johnson KP, Smith VS, Adams RJ, Clayton DH, Page RD (2001) Phylogenetic Analysis of Partial Sequences of Elongation Factor 1α Identifies Major Groupsof Lice (Insecta: Phthiraptera). Mol Phylogenet Evol 19(2):202–215. https://doi.org/10.1006/mpev.2001.0928

    Article  CAS  PubMed  Google Scholar 

  • Darling JA, Blum MJ (2007) DNA-based methods for monitoring invasive species: a review and prospectus. Biol Invasions 9(7):751–765. https://doi.org/10.1007/s10530-006-9079-4

    Article  Google Scholar 

  • Dong HF, Guo YJ, Niu LP (1987) Identification of three common spider mites in China by hybridization. Acta Phytol 14(3):157–161

    Google Scholar 

  • Ehara S (1956) Some Spider Mites from Northern Japan. J Fac Sci Hokkaido Univ 12(3):244–258. http://hdl.handle.net/2115/27155

  • Ehara S, Gotoh T (1990) A new Tetranychus closely related to T. viennensis Zacher (Acari: Tetranychidae). Int J Acarol 16(2):55–58. https://doi.org/10.1080/01647959008683512

    Article  Google Scholar 

  • Ehara S (1999) Revision of the spider mite family Tetranychidae of Japan (Acari, Prostigmata). Spec Divers 4(1):63–141

    Article  Google Scholar 

  • Erlandson MA, Holowachuk J, Sieminska EA, Hummel J, Otani J, Floate KD (2017) Development of a multiplex polymerase chain reaction assay for the identification of common cutworm species (Lepidoptera: Noctuidae) infesting canola in western Canada. Can Entomol 149(4):540–548. https://doi.org/10.4039/tce.2017.5

    Article  Google Scholar 

  • Ernieenor F, Ernna G, Jafson AS, Mariana A (2018) PCR identification and phylogenetic analysis of the medically important dust mite Suidasia medanensis (Acari: Suidasiidae) in Malaysia. Exp Appl Acarol 76:99–107. https://doi.org/10.1007/s10493-018-0285-4

    Article  CAS  PubMed  Google Scholar 

  • Fukunaga M, Yabuki M, Hamase A, Oliver HJ, Nakao M (2000) Molecular Phylogenetic Analysis of Ixodid Ticks Based on the Ribosomal DNA Spacer, Internal Transcribed Spacer 2. Sequences J Parasitol 86(1):38–43. https://doi.org/10.1645/0022-3395(2000)086[0038:MPAOIT]2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Wang YP, Wang YL, Cao KQ, Wang QY (2019) Species of apple spider mites and application of miticides in main apple-producing areas of China. China Plant Prot 39(2):67–70. https://doi.org/10.3969/j.issn.1672-6820.2019.02.014

    Article  Google Scholar 

  • Giantsis IA, Chaskopoulou A, Claude BM (2017a) Direct multiplex PCR (dmPCR) for the identification of six phlebotomine sand fly species (Diptera: Psychodidae), including major Leishmania vectors of the Mediterranean. J Econ Entomol 110(1):245–249. https://doi.org/10.1093/jee/tow269

    Article  CAS  PubMed  Google Scholar 

  • Giantsis IA, Castells SJ, Chaskopoulou A (2017b) The distribution of the invasive pest, rice water weevil Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae), is expanding in Europe: First record in the Balkans, confirmed by CO1 DNA barcoding. Phytoparasitica 45(2):147–149. https://doi.org/10.1007/s12600-017-0576-z

    Article  Google Scholar 

  • Gomez-Polo P, Traugott M, Alomar O, Castañé C, Rojo S, Agustí N (2014) Identification of the most common predatory hoverflies of Mediterranean vegetable crops and their parasitism using multiplex PCR. J Pest Sci 87(2):371–378. https://doi.org/10.1007/s10340-013-0550-6

    Article  Google Scholar 

  • Gotoh T, Araki R, Boubou A, Migeon A, Ferragut F, Navajas M (2009) Evidence of co-specificity between Tetranychus evansi and Tetranychus takafujii (Acari: Prostigmata, Tetranychidae): comments on taxonomic and agricultural aspects. Int J Acarol 35(6):485–501. https://doi.org/10.1080/01647950903431156

    Article  Google Scholar 

  • Grbić M, Van LT, Clark RM et al (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 479(7374):487–492. https://doi.org/10.1038/nature10640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greco MN, Liljestromn EGG, Sanchez, (1999) Spatial distribution and coincidence of Neoseiulus californicus and Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae) on strawberry. Exp Appl Acarol 23:567–580. https://doi.org/10.1023/A:1006125103981

    Article  Google Scholar 

  • Gu Y (1997) Study on the Interspecies Competition between Tetranychus urticae and Tetranychus veinnensis. Entomol J East China 40(1):71–76

    Google Scholar 

  • Gu Y, Cao TT (2017) Leaf mite pest succession dynamics and control technology in Jiaodong. Yantai Fruit Tree 3:25–27

    Google Scholar 

  • Hao SD, Chen YQ, Wang JZ, Wang H, Tao WQ, Zhang ZY, Shi XY, Zhou S (2015) Multiplex-PCR for identification of two Hishimonus species (Hemiptera: Cicadellidae) in jujube orchards and detection of jujube witches’ broom (JWB) phytoplasma in their bodies. Acta Entomol Sin 58(3):264–270

    CAS  Google Scholar 

  • Henegariu O, Heerema NA, Dlouhy SR, Vance GH, Vogt PH (1997) Multiplex PCR: critical parameters and step-by-step protocol. Biotechniques 23:504–511. https://doi.org/10.2144/97233rr01

    Article  CAS  PubMed  Google Scholar 

  • Hillis DM, Dixon MT (1991) Ribosomal DNA: Molecular Evolution and Phylogenetic Inference. Q Rev Bio 66(4):411–453. https://doi.org/10.1086/417338

    Article  CAS  Google Scholar 

  • Ho CC (2000) Spider-mite problems and control in Taiwan. Exp Appl Acarol 24(56):453–462. https://doi.org/10.1023/a:1006443619632

    Article  CAS  PubMed  Google Scholar 

  • Hong XY, Xue XF, Wang JJ, Dou W, Zhang YX, Chen HJ, Zhang JY, Chou GS, Hu JH, Wang SL, Yu LC, Shen HM, Sun RH, Guo JJ, Wu WN, Guo MF, Zhang JP, Chen BX, Song ZW, Gui LY (2013) Integrate control techniques for spider mites on important crops. Chinese J Appl Entomol 50(02):321–328

    CAS  Google Scholar 

  • Hong XY (2012) Agriculture acarology. China Agricultural Press, Beijing

    Google Scholar 

  • Huang PY, Lin LL, Hong QY, Liao FR (2012) Amplification and sequence analysis of mitochondrial 16S ribomal RNA and cytochrome oxidase I genes from the invasive Anselmella miltoni (Hymenoptera). J Biosafety 21(02):159–162

    Google Scholar 

  • Hurtado MA, Ansaloni T, Cros-Arteil S, Jacas JA, Navajas M (2008) Sequence analysis of the ribosomal Internal Transcribed Spacers region in spider mites (Prostigmata: Tetranychidae) occurring in citrus orchards in Eastern Spain: use for species discrimination. Annals of Applied Biology 153(2):167–174. https://doi.org/10.1111/j.1744-7348.2008.00250.x

    Article  CAS  Google Scholar 

  • Ji YJ, Zhang DX, He LJ (2003) Evolutionary conservation and versatility of a new set of primers for amplifying the ribosomal internal transcribed spacer regions in insects and other invertebrates. Mol Ecol Notes 3(4):581–585. https://doi.org/10.1046/j.1471-8286.2003.00519.x

    Article  CAS  Google Scholar 

  • Ji J, Zhang YX, Chen X, Lin JZ (2005) Laboratory population life table of Amphitetranychus viennensis (Zacher) (Acari: Tetranychidae) at different temperatures. Syst Appl Acarol-UK 10(1):7–10

    Google Scholar 

  • Jin PY, Sun JT, Chen L, Xue XF, Hong XY (2020) Geography alone cannot explain Tetranychus truncatus (Acari: Tetranychidae) population abundance and genetic diversity in the context of the center–periphery hypothesis. Heredity 124(2):383–396. https://doi.org/10.1038/s41437-019-0280-5

    Article  PubMed  Google Scholar 

  • Junqueira ACM, Lessinger AC, Azeredo-Espin AML (2002) Methods for the recovery of mitochondrial DNA sequences from museum specimens of myiasis-causing flies. Med Vet Entomol 16(1):39–45. https://doi.org/10.1046/j.0269-283x.2002.00336.x

    Article  CAS  PubMed  Google Scholar 

  • Kasap S (2003) Life history of hawthorn spider mite Amphitetranychus viennensis (Acarina: Tetranychidae) on various apple cultivars and at different temperatures. Exp Appl Acarol 31(1–2):79–91. https://doi.org/10.1023/B:APPA.0000005141.45970.f7

    Article  PubMed  Google Scholar 

  • Khaing TM, Lee J-H, Lee W-G, Lee K-Y (2013) A new record of Amphitetranychus quercivorus (Acari: Tetranychidae) in Korea and molecular comparison with A. viennensis. J Asia Pac Entomol 16:155–160. https://doi.org/10.1016/j.aspen.2012.12.003

    Article  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581

    Article  CAS  PubMed  Google Scholar 

  • Krainacker DA, Carey JR (1990) Male demographic constraints to extreme sex ratio in the two spotted spider mite. Oecologia 82:417–423. https://doi.org/10.1007/BF00317492

    Article  CAS  PubMed  Google Scholar 

  • Li D, Fan Q-H, Waite DW, Gunawardana D, George S, Kumarasinghe L (2015) Development and Validation of a Real-Time PCR Assay for Rapid Detection of Two-Spotted Spider Mite, Tetranychus urticae (Acari:Tetranychidae). PLoS ONE 10(7):e0131887. https://doi.org/10.1371/journal.pone.0131887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li DX, Quan PQ, Dong JF, Hu ZJ, Yang HB, Chen HJ (2017) Reproduction potential of male adults of the hawthorn spider mite, Tetranychus viennensis. Acta Entomol Sinica 60(05):562–569

    Google Scholar 

  • Li GQ, Xue XF, Zhang KJ, Hong XY (2010) Identification and molecular phylogeny of agriculturally important spider mites (Acari: Tetranychidae) based on mitochondrial and nuclear ribosomal DNA sequences, with an emphasis on Tetranychus. Zootaxa 2647(1):1–15

    Article  Google Scholar 

  • Li X, Wen X, Sun S (1998) Study on the bionomics of Tetranychus truncatus Ehara. Forest Pest Dis 3:3–4

    Google Scholar 

  • Liu AX, Liu YX (1996) Preliminary observation on the damage of Tetranychus truncatus to jujube trees. Forest Pest Commun 2:30–31

    Google Scholar 

  • Liu SH, Luo J, Liu R, Zhang CG, Duan DK, Chen HM, Bei WY, Tang J (2018) Identification of Nilaparvata lugens and Its Two Sibling Species (N. bakeri and N. muiri) by Direct Multiplex PCR. J Econ Entomol 111(6):2869–2875

    CAS  PubMed  Google Scholar 

  • Ma Q, Xia W (2011) Pengmao A preliminary study of biological characteristics of Tetranychid on clove tree. J Qinghai Univ 29(6):75–79

    Google Scholar 

  • Maeda T, Takabayashi J, Takafuji YA (2000) Effects of Light on the Tritrophic Interaction Between Kidney Bean Plants, Two-Spotted Spider Mites and Predatory Mites, Amblyseius Womersleyi (Acari: Phytoseiidae). Exp Appl Acarol 24(5–6):415–425. https://doi.org/10.1023/A:1006449108245

    Article  CAS  PubMed  Google Scholar 

  • Mallatt JM, Garey JR, Shultz JW (2004) Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol Phylogenet Evol 31:178–191

    Article  CAS  PubMed  Google Scholar 

  • Mallatt J, Giribet G (2006) Further use of nearly complete 28S and 18S rRNA genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch. Mol Phylogenet Evol 40:772–794

    Article  CAS  PubMed  Google Scholar 

  • Markoulatos P, Siafakas N, Moncany M (2002) Multiplex polymerase chain reaction: a practical approach. J Clin Lab Anal 16:47–51. https://doi.org/10.1002/jcla.2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda T, Fukumoto C, Hinomoto N, Gotoh T (2013) DNA-based identification of spider mites: molecular evidence for cryptic species of the genus Tetranychus (Acari: Tetranychidae). J Econ Entomol 106:463–472. https://doi.org/10.1603/EC12328

    Article  CAS  PubMed  Google Scholar 

  • Ma EP, Yuan YL (1975) Preliminary study on the genus Tetranychus dufour in China (Acarina : tetranychidae). Acta Entomol Sin 18(2):103–111

    Google Scholar 

  • Matsuda T, Morishita M, Hinomoto N, Gotoh T (2014) Phylogenetic analysis of the spider mite sub-family Tetranychinae (Acari: Tetranychidae) based on the mitochondrial COI gene and the 18S and the 5′end of the 28S rRNA genes indicates that several genera are polyphyletic. PLoS One 9:e108672

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller BR, Crabtree MB, Savage HM (1996) Phylogeny of fourteen Culex mosquito species, including the Culex pipiens complex, inferred from the internal transcribed spacers of ribosomal DNA. Insect Mol Biol 5:93–107. https://doi.org/10.1111/j.1365-2583.1996.tb00044.x

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Higashiura Y, Maeto K (2017) Evaluation of easy, non-destructive method of DNA extraction from minute insects. Appl Entomol Zool 52:349–352

    Article  CAS  Google Scholar 

  • Navajas M (2010) Species-wide homogeneity of nuclear ribosomal ITS2 sequences in the spider mite Tetranychus urticae contrasts with extensive mitochondrial COI polymorphism. Heredity 80:742–752. https://doi.org/10.1046/j.1365-2540.1998.00349.x

    Article  Google Scholar 

  • Navajas M, Boursot P (2003) Nuclear ribosomal DNA monophyly versus mitochondrial DNA polyphyly in two closely related mite species: the influence of life history and molecular drive. Proc Biol Sci 270(1):S124-127. https://doi.org/10.1098/rsbl.2003.0034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie JY, Dong YF(1997) Research progress of Tetranychus urticae on fruit trees.China Fruits (04):46–47

  • Norihide H, Dinh PT, Anh TP, Thi BNL, Ryusen T, Kazunori O, Masahiro O, Akio T (2007) Identification of spider mites (Acari: Tetranychidae) by DNA sequences: A case study in northern Vietnam. Int J Acarol 33(1):53–60. https://doi.org/10.1080/01647950708684501

    Article  Google Scholar 

  • Osakabe M, Hirose T, Sato M (2002) Discrimination of four Japanese Tetranychus species (Acari: Tetranychidae) using PCR-RFLP of the inter-transcribed spacer region of nuclear ribosomal DNA. Appl Entomol Zool 37(3):399–407. https://doi.org/10.1303/aez.2002.399

    Article  CAS  Google Scholar 

  • Ota A, Karasawa S, Nakamura T, Harada H, Shimano S (2011) Non-destructive DNA extraction protocol for oribatid mites (Acari: Oribatida). Edaphologia 89:19–24

    Google Scholar 

  • Ovalle TM, VásquezOrdóñez AA, Jimenez J, Parsa S, Cuellar WJ, Becerra LLA (2020) A simple PCR-based method for the rapid and accurate identification of spider mites (Tetranychidae) on cassava. Sci Rep 10(1):19496. https://doi.org/10.1038/s41598-020-75743-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang BP, Zhou XR, Shi L, Mu HB (2004) Performance of Tetranychus truncatus Ehara (Acarina :Tetranychidae)reared with different host plants. Acta Entomol Sinica 47(1):55–58. https://doi.org/10.1109/JLT.2003.821766

    Article  Google Scholar 

  • Pérez-Sayas C, Pina T, Sabater-Muñoz B, Gómez-Martinez MA, Jaques JA, Mónica A et al (2022) DNA barcoding and phylogeny of Acari species based on ITS and COI markers. J Zool Syst Evol Res. https://doi.org/10.1155/2022/5317995

    Article  Google Scholar 

  • Pu CW, Wu WS (1993) A preliminary report on the damage of Tetranychus urticae to fruit tree. China Fruits 04:24–25

    Google Scholar 

  • Ros VID, Breeuwer JAJ (2007) Spider mite (Acari: Tetranychidae) mitochondrial COI phylogeny reviewed: host plant relationships, phylogeography, reproductive parasites and barcoding. Exp Appl Acarol 42(4):239–262. https://doi.org/10.1007/s10493-007-9092-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Roy M, Brodeur J, Cloutier C (2003) Temperature and sex allocation in a spider mite. Oecologia 135:322–326

    Article  PubMed  Google Scholar 

  • Sabelis MW (1991) Life-history evolution of spider mites. Springer, Germany, pp 23–49

    Google Scholar 

  • Sakamoto H, Gotoh T (2017) Non-destructive direct polymerase chain reaction (direct PCR) greatly facilitates molecular identification of spider mites (Acari: Tetranychidae). Appl Entomol Zool 52(4):661–665. https://doi.org/10.1007/s13355-017-0512-1

    Article  CAS  Google Scholar 

  • Shim JK, Khaing TM, Seo HE, Ahn JY, Jung DO, Lee JH, Lee KY (2016) Development of species-specific primers for rapid diagnosis of Tetranychus urticae, T. kanzawai, T. phaselus and T. truncatus (Acari: Tetranychidae). Entomol Res 46:162–169. https://doi.org/10.1111/1748-5967.12154

    Article  CAS  Google Scholar 

  • Sinaie S, Namaghi HS, Fekrat L (2018) A Multiplex PCR Assay for Simultaneous Discrimination of Two Predominant Spider Mites of the Genus Tetranychus (Acari: Tetranychidae) in Greenhouses of Iran. J Agr Sci Tech-Iran 20:733–744

    Google Scholar 

  • Sun JT, Jin PY, Hoffmann AA, Duan XZ, Dai J, Hu G, Xue XF, Hong XY (2018) Evolutionary divergence of mitochondrial genomes in two Tetranychus species distributed across different climates. Insect Mol Biol 27:698–709. https://doi.org/10.1111/imb.12501

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Qiao L (2004) The Effect on the Selectivity of Tetranychus viennensis for Different Host Plants by Vilatiles From Plant. Sci Silvae Sinicae 40(3):193–197. https://doi.org/10.11707/j.1001-7488.20040334

  • Tan ML (1998) Occurrence characteristics and disaster causes of Tetranychus urticae. China Fruits 03:46–47

    Google Scholar 

  • Ullah MS, Gotoh T, Lim UT (2014) Life history parameters of three phytophagous spider mites, Tetranychus piercei, T. truncatus and T. bambusae (Acari: Tetranychidae). J Asia-Pac Entomol 17:767–773. https://doi.org/10.1016/j.aspen.2014.07.008

    Article  Google Scholar 

  • Värv K, Ivanova A, Geller J, Remm J, Jaik K, Tikunova N, Rar V, Lundkvist A, Golovljova I (2016) Identification of I. ricinus, I. persulcatus and I. trianguliceps species by multiplex PCR. Ticks Tick Borne Dis 8(2):235–240

    Article  PubMed  Google Scholar 

  • Wang HF (1981) Economic Insects Fauna Of China Fasc.23 (Acari: Tetranychidae). China Sci Publishing Media Ltd, Beijing

  • Wang H, Li SD, Liang P (1999) Be wary of Tetranychus urticae Koch spreading with fruit. Plant Prot Tech Ext 19(3):44–45

    Google Scholar 

  • Wang SL, Zhang YJ, Wu QJ, Xie W, Xu BY (2014) Dominant species identification of spider mites on vegetables in some areas in Beijing and Hebei. J Environ Entomol 36(4):481–486

    Google Scholar 

  • Wang Y, Nansen C, Zhang YL (2016) Integrative insect taxonomy based on morphology, mitochondrial DNA, and hyperspectral reflectance profiling. Zool J Linn Soc Lond 177:378–394. https://doi.org/10.1111/zoj.12367

    Article  Google Scholar 

  • Watanabe S, Melzer MJ (2017) A multiplex PCR assay for differentiating coconut Rhinoceros beetle (Coleoptera: Scarabaeidae) from oriental flower beetle (Coleoptera: Scarabaeidae) in early life stages and excrement. J Econ Entomol 110:678–682. https://doi.org/10.1093/jee/tow299

    Article  CAS  PubMed  Google Scholar 

  • Wauthy G, Noti MI, Leponce M, Bauchau V (1998) Taxy and variations of leg setae and solenidia in Tetranychus urticae (Acari, Prostigmata). Acarologia 39:233–255. https://doi.org/10.1002/(SICI)1096-9063(1998110)54:3%3c320::AID-PS840%3e3.0.CO;2-1

    Article  Google Scholar 

  • Wen J, Zhi JR, Lv ZY, Zhang YY (2017) Effects of Tetranychus urticae feeding on the contents of main nutrient and defensive enzymes activities of tomato leaves. J Enviro Entomol 39(1):172–181

    Google Scholar 

  • Werblow A, Flechl E, Klimpel S, Zittra C, Lebl K, Kieser K, Laciny A, Silbermayr K, Melaun C, Fuehrer HP (2016) Direct PCR of indigenous and invasive mosquito species: a time- and cost-effective technique of mosquito barcoding. Med Vet Entomol 30:8–13. https://doi.org/10.1111/mve.12154

    Article  CAS  PubMed  Google Scholar 

  • Wong WH, Tay YC, Puniamoorthy J, Balke M, Cranston PS, Meier R (2014) Direct PCR optimization yields a rapid, cost-effective, nondestructive and efficient method for obtaining DNA barcodes without DNA extraction. Mol Ecol Resour 14:1271–1280. https://doi.org/10.1111/1755-0998.12275

    Article  CAS  PubMed  Google Scholar 

  • Xia W, Wang LS, Wu XH, Qu HL, Jiao XD, Wang X, Zhang JP (2014) Study on spatial distribution model and sampling method of Tetranychus truncatus Ehara on Zizyphus jujube. J Environ Entomol 36(3):327–334

    Google Scholar 

  • Xie K, Yang K, Huo SM, Bing XL, Xia X, Hong XY (2019) Wolbachia suppresses Spiroplasma in female Tetranychus truncatus. Chin Bull Entomol 56(4):8

    Google Scholar 

  • Yang J, Gao Y, Liu ZF, Zhang YY, Zhao J, Zhang PJ, Fan JB, Zhou XG, Fan RJ (2019) Selection of Reference Genes for RT-qPCR Analysis Under Intrinsic Conditions in the Hawthorn Spider Mite, Amphitetranychus viennensis (Acarina: Tetranychidae). Front Physiol 10:14–27. https://doi.org/10.3389/fphys.2019.01427

    Article  Google Scholar 

  • Yan WT, Qiu GS, Zhou YS, Zhang HJ, Zhang P, Liu CL, Zheng YC (2010) Interspecific domino effects of three major pernicious mites in apple orchard. J Fruit Sci 27(5):4

    Google Scholar 

  • Zhang ZQ, Jacobson RJ (2000) Using adult female morphological characters for differentiating Tetrancyhus urticae complex (Acari: Tetranychidae) from greenhouse tomato crops in UK. Syst Appl Acarol-UK 5:69–76

    Google Scholar 

  • Zhang Y, Guo XH, Liu GC, Zhang Z (2011) Application of DNA barcodes to molecular systematics of Coleoptera. Chinese J Appl Entomol 48(2):410–416

    CAS  Google Scholar 

  • ZhouYS PuCS, Liu CL (1996) Beware of the damage and spread of Tetrancyhus urticae in the northern fruit area. Plant Prot 22(5):51–52

    Google Scholar 

  • Zhu L, Kang ZJ, Wei SJ, Gong YJ, Shi BC (2013) Investigation on the occurrence of Tetranychus urticae on different hosts in various districts and counties of Beijing in 2012. Nor Horticul 04:120–123

    Google Scholar 

Download references

Acknowledgements

We sincerely appreciate Yang Aizhen at Key Laboratory of Urban Agriculture in North China, Ministry of Agriculture And Rural Affairs for her help with partial sample testing. And also appreciate Su Hongtian, Chief Animal Breeder of the National Animal Husbandry Station, Thanks for his dedication and hard work on this work. This research was supported by grants from the Beijing Municipal Natural Science Foundation, and the Beijing Municipal Education Commission Science and Technology Plan Key Project (KZ201810020026), the Beijing Municipal Natural Science Foundation (6182002), the National Natural Science Foundation of China (31272099).

Author information

Authors and Affiliations

Authors

Contributions

Conception and experimental design: WJZ, HSD; Acquisition of data: HPZ, RZG; Statistical analysis: LC, WJW, HLB, DLZ; Results interpretation: LC, ZZY, WL; Manuscript writing: LC, WJZ. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Jin-zhong Wang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of/no competing interests.

Ethical approval

No ethical approval or specific permit was needed for rearing and experimental use of T. truncatus, T urticae, A. viennensis which are neither protected nor endangered.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Hao, Sd., Ha, PZ. et al. A multiplex direct PCR method for the rapid and accurate discrimination of three species of spider mites (Acari: Tetranychidae) in fruit orchards in Beijing. Exp Appl Acarol 92, 403–421 (2024). https://doi.org/10.1007/s10493-023-00900-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-023-00900-5

Keywords

Navigation