Abstract
Tenuipalpid mites of the genus Brevipalpus are of significant economic and quarantine importance in agriculture. They can damage and vector phytopathogenic viruses in coffee plantations and other crops. In this study, we focused on: identification of the Brevipalpus species, assessment of the spread of Brevipalpus-associated viruses (CoRSV, CiLV-N, CiLVC and CiLVC2), and mite population fluctuations over the course of 1 year. The study was conducted in coffee plantations in Soconusco, a coffee-producing region in Chiapas, Mexico. The collected mites of the Brevipalpus phoenicis sensu lato species complex (635) were identified as Brevipalpus papayensis (80.2%) and B. yothersi (19.8%) based on morphological and molecular characteristics. Their population abundance was low and there were no indications for virosis. The highest mite abundance was recorded in August–September and the lowest in February–March. An interaction was observed between mite abundance and coffee species in open-growth and shaded cultivation at various altitudes. Brevipalpus papayensis was most abundant in Coffea arabica var. Bourbon, in shaded (80%) growing conditions at an altitude of 1300 m above sea level. In C. canephora (in open-growth cultivation conditions at low altitude), B. yothersi was more abundant than in C. arabica, and as abundant as B. papayensis. We are of the opinion that, at this moment, B. papayensis and B. yothersi do not present risks to the production of coffee for the studied plantations. However, as the coffee-producing regions of Mexico are ecologically diverse, it will be important to continue examining the status of Brevipalpus mite populations in other regions in Mexico.




Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Beard JJ, Ochoa R, Bauchan GR, Trice MD, Redford AJ, Walters TW, Mitter C (2012) Flat mites of the world edition 2. Identification Technology Program, CPHST, PPQ, APHIS, USDA; Fort Collins, CO. http://idtools.org/id/mites/flatmites/
Beard JJ, Ochoa R, Braswell WE, Bauchan G (2015) Brevipalpus phoenicis (Geijskes) species complex (Acari: Tenuipalpidae): a closer look. Zootaxa 3944(1):1–67. https://doi.org/10.11646/zootaxa.3944.1.1
Castro EB, Mesa NC, Feres RJF, de Moraes GJ, Ochoa R, Beard JJ, Demite PR (2020) A newly available database of an important family of phytophagous mites: Tenuipalpidae database. Zootaxa 4868(4):577–583. https://doi.org/10.11646/zootaxa.4868.4.7
Chagas CM, Kitajima EW, Rodrigues J (2003) Coffee ringspot virus vectored by Brevipalpus phoenicis (Acari: Tenuipalpidae) in coffee. Exp Appl Acarol 30:203–213. https://doi.org/10.1023/B:APPA.0000006549.87310.41
Childers CC, Derrick K (2003) Brevipalpus mites as vectors of unassigned rhabdoviruses in various crops. Exp Appl Acarol 30:1–3. https://doi.org/10.1023/B:APPA.0000006542.96404.63
Childers CC, French JV, Rodriguez JCV (2003) Brevipalpus californicus, B. obovatus, B. phoenicis and B. lewisi (Acari: Tenuipalpidae): a review of their biology feeding injury and economic importance. Exp Appl Acarol 30:5–28. https://doi.org/10.1023/B:APPA.0000006543.34042.b4
Childers CC, Rodriguez JCV (2011) An overview of Brevipalpus mite (Acari: Tenuipalpidae) and the plant viruses they transmit. Zoosymposia 6:180–192. https://doi.org/10.11646/zoosymposia.6.1.28
di Palma DD, Tassi DA, Kitajima WE (2020) On some morphological and ultrastructural features of the insemination system in five species of the genus Brevipalpus (Acari: Tenuipalpidae). Exp Appl Acarol 81:531–546. https://doi.org/10.1007/s10493-020-00526-x
Gerson U (2008) The Tenuipalpidae: an under-explored family of plant-feeding mites. Syst Appl Acarol 13:83–101. https://doi.org/10.11158/saa.13.2.1
Gómez-Mercado R, Santillan-Galicia MT, Guzman-Franco AW, Valdovinos-Ponce G, Becerril-Roman EA, Robles-Garcia PL (2019) Spatiotemporal association between the mite Brevipalpus yothersi and Citrus leprosis virus C in orange orchards. Exp Appl Acarol 79:69–86. https://doi.org/10.1007/s10493-019-00409-w
Groot TVM, Breeuwer JAJ (2006) Cardinium symbionts induce haploid thelytoky in most clones of three closely related Brevipalpus species. Exp Appl Acarol 39:257–271. https://doi.org/10.1007/s10493-006-9019-0
Jeppson LR, Keifer HH, Baker EW (1975) Mites Injurious to Economic Plants. University of California Press, Berkeley, p 614
Kitajima EW, Rodrigues JCV, Freitas-Astua J (2010) An annotated list of ornamentals naturally found infected by Brevipalpus mite-transmitted viruses. Scientia Agrícola (piracicaba, Brazil) 67(3):1–25. https://doi.org/10.1590/S0103-90162010000300014
Kitajima EW, Chagas CM, Braghini MT, Fazuoli LC, Locali-Fabris EC, Salaroli RB (2011) Natural infection of several Coffea species and hybrids and Psilanthus ebracteolatus by the Coffee ringspot virus (CoRSV). Scientia Agricola 68(4):503–507. https://doi.org/10.1590/S0103-90162011000400017
Kitajima EW, Novelli VM, Alberti G (2014) Anatomy and fine structure of Brevipalpus mites (Tenuipalpidae)-economically important plant-virus vectors-Part 1: An update on the biology and economic importance of Brevipalpus mites. In: Alberti G, Kitajima EW. (Eds): Anatomy and fine structure of Brevipalpus mites (Tenuipalpidae)-economically important plant-virus vectors. Zoologica vol 160, pp 1–10
Krantz GW, Walter DE (2009) Manual of Acarology, 3rd edn. Texas Tech University Press, Lubbock, p 807
Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096
Locali EC, Freitas-Astua J, de Souza AA, Takita MA, Astua-Monge G, Antonioli R, Kitajima EW, Machado MA (2003) Development of a molecular tool for the diagnosis of leprosis, a major threat to citrus production in the Americas. Plant Dis 87(11):1317–1321. https://doi.org/10.1094/PDIS.2003.87.11.1317
Maclot F, Candresse T, Filloux D, Malmstrom CM, Roumagnac P, van der Vlugt R, Massart S (2020) Illuminating an ecological blackbox: using high throughput sequencing to characterize the plant virome across scales. Front Microbiol 11:578064. https://doi.org/10.3389/fmicb.2020.578064
Mesa CNC, Rodríguez TIV (2012) Ácaros que afectan la calidad del fruto de los cítricos en Colombia. Capitulo 6º, p. 163–172. In: Cítricos: cultivo, poscosecha e industrialización. Serie Lasallista Investigación y Ciencia. Corporación Universitaria Lasallista. 367 p
Mineiro JLC, Sato ME, Berton LHC, Raga A (2019) Ácaros (Arachnida: Acari) en plantas de café en fragmentos de bosque y plantación convencional en Monte Alegre do Sul, Estado de São Paulo. Brasil O Biológico 81(1):1–30. https://doi.org/10.31368/1980-6221v81a10004
Moraes GJ, Flechtmann CHW (2008) Manual de acarologia: acarologia básica e ácaros de plantas cultivadas no Brasil. Ribeirão Preto: Holos, 308 p.
Navajas M, Gutierrez J, Lagnel J, Boursot P (1996) Mitochondrial cytochrome oxidase I in tetranychid mites: a comparison between molecular phylogeny and changes of morphological and life history traits. Bull Entomol Res 86(4):407–417. https://doi.org/10.1017/S0007485300034994
Navia D, Mendonça RS, Ferragut F, Miranda LC, Trincado RC, Michaux J, Navajas M (2013) Cryptic diversity in Brevipalpus mites (Tenuipalpidae). Zool Scr 42:406–426. https://doi.org/10.1111/zsc.12013
Nunes MA, Mineiro JLC, Rogerio LA, Ferreira LM, Tassi A, Novelli VM, Kitajima EW, Freitas AJ (2018) First report of Brevipalpus papayensis Baker (Acari: Tenuipalpidae) as vector of Coffee ringspot virus and Citrus leprosis virus C. Plant Dis 102(5):1046. https://doi.org/10.1094/PDIS-07-17-1000-PDN
Ochoa R, Aguilar H, Vargas C (1994) Phytophagous mites of Central Amerca: An illustrated guide. CATIE, Serie Técnica, Manual Técnico No. 6, English edition, 234 pp
Quiroz M, Petit Y, Poleo N, Gómez A (2005) Distribución de Brevipalpus phoenicis (Geijskes) (Acari: Tenuipalpidae) en la planta del guayabo (Psidium guajava L.) en La Coruba, municipio Mara, estado Zulia. Venezuela. Entomotropica 20(1):39–47
R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL https://www.R-project.org/
Ramos-González PL, Chabi-Jesus C, Guerra-Peraza O, Tassi AD, Kitajima EW, Harakava R, Barbosa-Salaroli R, Freitas-Astúa J (2017) Citrus leprosis virus N: a new dichorhavirus causing citrus leprosis disease. Phytopathology 107(8):963–976. https://doi.org/10.1094/PHYTO-02-17-0042-R
Rodrigues JCV, Childers CC (2013) Brevipalpus mites (Acari: Tenuipalpidae): vectors of invasive, non-systemic cytoplasmic and nuclear viruses in plants. Exp Appl Acarol 59:165–175. https://doi.org/10.1007/s10493-012-9632-z
Rodrigues JCV, Rodriguez CM, Moreira L, Villalobos W, Rivera C, Childers CC (2002) Occurrence of Coffee ringspot virus, a Brevipalpus mite borne virus in coffee in Costa Rica. Plant Dis 86(5):564. https://doi.org/10.1094/PDIS.2002.86.5.564B
Roy A, Choudhary N, Guillermo LM, Shao J, Govindarajulu A, Achor D, Wei G, Picton DD, Levy L, Nakhla MK, Hartung JS, Brlansky RH (2013) A novel virus of the genus Cilevirus causing symptoms similar to citrus leprosis. Phytopathology 103(5):488–500. https://doi.org/10.1094/PHYTO-07-12-0177-R
Roy A, Leon MG, Stone AL, Schneider WL, Hartung JS, Brlansky RH (2014) First report of Citrus leprosis virus nuclear type in sweet orange in Colombia. Plant Dis 98(8):1162. https://doi.org/10.1094/PDIS-02-14-0117-PDN
Roy A, Hartung J, Schneider W, Shao J, León G, Melzer M, Beard J, Otero-Colina G, Bauchan GR, Ochoa R et al (2015) Role bending: complex relationships between viruses, hosts and vectors related to citrus leprosis, an emerging disease. Phytophatology 105(7):1013–1025. https://doi.org/10.1094/PHYTO-12-14-0375-FI
Salinas-Vargas D, Santillán-Galicia MT, Guzmán-Franco AW, Hernández-López A, Ortega-Arenas LD, Mora-Aguilera G (2016) Analysis of genetic variation in Brevipalpus yothersi (Acari: Tenuipalpidae) populations from four species of citrus host plants. PLoS ONE 11(10):e0164552. https://doi.org/10.1371/journal.pone.0164552
Sánchez-Velázquez EJ, Santillán-Galicia MT, Novelli VM, Nunes MA, Mora-Aguilera G, Valdez-Carrasco JM, Otero-Colina G, Freitas AJ (2015) Diversity and genetic variation among Brevipalpus populations from Brazil and Mexico. PLoS ONE 10(7):1–16. https://doi.org/10.1371/journal.pone.0133861
Secretaria de Agricultura y Desarrollo Rural (SADER) (2018) México, onceavo productor mundial de café. https://www.gob.mx/agricultura/es/articulos/mexico-onceavo-productor-mundial-de-cafe? (Accessed 10 March 2021)
Spongoski S, Rebelles PR, Zacarias MS (2005) Acarofauna da cafeicultura de cerrado em Patrocínio, Minas Gerais. Ciênc. agrotec., Lavras 29(1):9–17.
Tassi AD, Garita-Salazar LC, Amorim L, Novelli VM, Freitas-Astúa J, Childers CC, Kitajima EW (2017) Virus-vector relationship in the Citrus leprosis pathosystem. Exp App Acarol 71(3):227–241. https://doi.org/10.1007/s10493-017-0123-0
Teodoro A, Klein AM, Reis PR, Tscharntke T (2009) Agroforestry management affects coffee pests contingent on season and developmental stage. Agric for Entomol 11:295–300
Acknowledgements
We thank the Centro Nacional de Referencia Fitosanitaria (CNRF-SENASICA) for providing us with the positive control sample of CiLVC used in this study. We are grateful to Graciela Huerta Palacios, Salvador Hernández Moreno and Alfredo Castillo Vera for their critical reading of the manuscript, and to Verónica García Fajardo for providing invaluable technical assistance with molecular analysis. We also wish to thank Eduardo Rafael Chamé Vázquez, for editing the mite photomicrographs, Misael Martínez Bolaños, who served as the contact person with the coffee plantations, and the plantation owners themselves. Julio Domínguez Gabriel would like to acknowledge Consejo Nacional de Ciencia y Tecnología (CONACyT) for postgraduate fellowship 885059.
Author information
Authors and Affiliations
Contributions
RGG and JDG conceived the present study and designed the experiments. JDG carried out the experiments, analysed the data and drafted the manuscript. RGG supervised the project, analysed the data and managed the development of the manuscript. KGN contributed to the molecular analysis and provided critical input on the manuscript. GOC performed the taxonomic classification of the studied acarines and provided critical comments on the manuscript. JV-M assisted with the statistical analysis. All authors have read and approved the final version of the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that no competing interests exist.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Domínguez-Gabriel, J., Guillén-Navarro, K., Otero-Colina, G. et al. Brevipalpus mites associated with coffee plants (Coffea arabica and C. canephora) in Chiapas, Mexico. Exp Appl Acarol 85, 1–17 (2021). https://doi.org/10.1007/s10493-021-00657-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10493-021-00657-9


