Skip to main content
Log in

Wolbachia and Spiroplasma could influence bacterial communities of the spider mite Tetranychus truncatus

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

The structures of arthropod bacterial communities are complex. These microbiotas usually provide many beneficial services to their hosts, whereas occasionally they may be parasitical. To date, little is known about the bacterial communities of Tetranychus truncatus and the factors contributing to the structure of its bacterial communities are unexplored yet. Here, we used four symbiont-infected T. truncatus strains—including one Wolbachia and Spiroplasma co-infected strain, two symbiont singly-infected strains and one symbiont uninfected strain—to investigate the influence of endosymbionts on the structure of the host mites’ microbiota. Based on 16S rRNA genes sequencing analysis, we found Wolbachia and Spiroplasma were the two most abundant bacteria in T. truncatus and the presence of both symbionts could not change the diversity of bacterial communities (based on alpha-diversity indexes such as ACE, Chao1, Shannon and Simpson diversity index). Symbiont infection did alter the abundance of many other bacterial genera, such as Megamonas and Bacteroides. The structures of bacterial communities differed significantly among symbiont-infected strains. These results suggested a prominent effect of Wolbachia and Spiroplasma on bacterial communities of the host T. truncatus. These findings advance our understanding of T. truncatus microbiota and will be helpful for further study on bacterial communities of spider mites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baldo L, Hotopp JCD, Jolley KA, Bordenstein SR, Biber SA, Choudhury RR, Hayashi C, Maiden MCJ, Tettelin H, Werren JH (2006) Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl Environ Microbiol 72:7098–7110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ballinger MJ, Gawryluk RMR, Perlman SJ (2019) Toxin and genome evolution in a Drosophila defensive symbiosis. Genome Biol Evol 11:253–262

    CAS  PubMed  Google Scholar 

  • Ballinger MJ, Perlman SJ (2017) Generality of toxins in defensive symbiosis: ribosome-inactivating proteins and defense against parasitic wasps in Drosophila. PLoS Pathog 13:e1006431

    PubMed  PubMed Central  Google Scholar 

  • Bolland HR, Gutierrez J, Flechtmann CHW (1998) World catalogue of the spider mite family (Acari: Tetranychidae). Brill, Leiden

    Google Scholar 

  • Breeuwer JAJ (1997) Wolbachia and cytoplasmic incompatibility in the spider mites Tetranychus urticae and T. turkestani. Heredity 79:41–47

    Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley JA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Zhao J, Joshi J, Xi Z, Norman B, Walker ED (2016) Persistent infection by Wolbachia wAlbB has no effect on composition of the gut microbiota in adult female Anopheles stephensi. Front Microbiol 7:1485

    PubMed  PubMed Central  Google Scholar 

  • Chapman MG, Underwood AJ (1999) Ecological patterns in multivariate assemblages: information and interpretation of negative values in ANOSIM test. Mar Ecol Prog Ser 180:257–265

    Google Scholar 

  • Colman DR, Toolson EC, Takacs-Vesbach CD (2012) Do diet and taxonomy influence insect gut bacteria communities? Mol Ecol 21(20):5124–5137

    CAS  PubMed  Google Scholar 

  • Darby AC, Armstrong SD, Bah GS, Kaur G, Hughes MA, Kay SM (2012) Analysis of gene expression from the Wolbachia genome of a filarial nematode supports both metabolic and defensive roles within the symbiosis. Genome Res 22:2467–2477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dittmer J, Bouchon D (2018) Feminizing Wolbachia influence microbiota composition in the terrestrial isopod Armadillidium vulgare. Sci Rep 8(1):6998

    PubMed  PubMed Central  Google Scholar 

  • Engel P, Moran NA (2013) The gut microbiota of insects—diversity in structure and function. FEMS Microbiol Rev 37:699–735

    CAS  PubMed  Google Scholar 

  • Enigl M, Schausberger P (2007) Incidence of the endosymbionts Wolbachia, Cardinium and Spiroplasma in phytoseiid mites and associated prey. Exp Appl Acarol 42:75–85

    PubMed  Google Scholar 

  • Erban T, Klimov PB, Smrz J, Phillips TW, Nesvorna M, Kopecky J, Hubert J (2016) Populations of stored product mite Tyrophagus putrescentiae differ in their bacterial communities. Front Microbiol. https://doi.org/10.3389/fmicb.2016.01046

    Article  PubMed  PubMed Central  Google Scholar 

  • Gotoh T, Noda H, Hong XY (2003) Wolbachia distribution and cytoplasmic incompatibility based on a survey of 42 spider mite species (Acari: Tetranychidae) in Japan. Heredity 91:208–216

    CAS  PubMed  Google Scholar 

  • Gotoh T, Noda H, Ito S (2007) Cardinium symbionts cause cytoplasmic incompatibility in spider mites. Heredity 98:13–20

    CAS  PubMed  Google Scholar 

  • Clark TB, Henegar RB, Rosen L, Hackett KJ, Whitcomb RF, Lowry JE, Saillard C, Bové M, Tully JG, Williamson DL (1987) New Spiroplasmas from insects and flowers: isolation, ecology, and host association. Isr J Med Sci 23:687–690

    CAS  PubMed  Google Scholar 

  • Hamilton PT, Peng F, Boulanger MJ, Perlman SJ (2016) A ribosome-inactivating protein in a Drosophila defensive symbiont. Proc Natl Acad Sci USA 113:350–355

    CAS  PubMed  Google Scholar 

  • Harumoto T, Anbutsu H, Lemaitre B, Fukatsu T (2016) Male-killing symbiont damages host’s dosage-compensated sex chromosome to induce embryonic apoptosis. Nat Commun 7:12781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hubert J, Erban T, Kamler M, Kopecky J, Nesvorna M, Hejdankova S, Titera D, Tyl J, Zurek L (2015) Bacteria detected in the honeybee parasitic mite Varroa destructor collected from beehive winter debris. J Appl Microbiol 119:640–654

    CAS  PubMed  Google Scholar 

  • Hughes GL, Dodson BL, Johnson RM, Murdock CC, Tsujimoto H, Suzuki Y (2014) Native microbiome impedes vertical transmission of Wolbachia in Anopheles mosquitoes. Proc Natl Acad Sci USA 111(34):12498–12503

    CAS  PubMed  Google Scholar 

  • Jaenike J, Polak M, Fiskin A, Helou M, Minhas M (2007) Interspecific transmission of endosymbiotic Spiroplasma by mites. Biol Lett 3:23–25

    CAS  PubMed  Google Scholar 

  • Karamipour N, Fathipour Y, Mehrabadi M (2016) Gammaproteobacteria as essential primary symbionts in the striped shield bug, Graphosoma lineatum (Hemiptera: Pentatomidae). Sci Rep 6:33168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufman MG, Klug MJ (1991) The contribution of hindgut bacteria to dietary carbohydrate utilization by crickets (Orthoptera: Gryllidae). Comp Biochem Physiol A 98:117–123

    Google Scholar 

  • Koch H, Schmid-Hempel P (2011) Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc Natl Acad Sci USA 108:19288–19292

    CAS  PubMed  Google Scholar 

  • Larracuente AM, Meller VH (2016) Host–symbiont interactions: male-killers exposed. Curr Biol 26(10):R429–R431

    CAS  PubMed  Google Scholar 

  • Li L, Xie B, Dong C, Wang M, Liu H (2015) Can closed artificial ecosystem have an impact on insect microbial community? A case study of yellow mealworm (Tenebrio molitor L.). Ecol Eng 86:183–189

    Google Scholar 

  • Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963

    CAS  PubMed  PubMed Central  Google Scholar 

  • Migeon A, Dorkeld F (2006–2017) Spider mites web: a comprehensive database for the Tetranychidae. http://www.montpellier.inra.fr/CBGP/spmweb.

  • Miller MM, Popova LB, Meleshkevitch EA, Tran PV, Boudko DY (2008) The invertebrate B0 system transporter, D. melanogaster NAT1, has unique d-amino acid affinity and mediates gut and brain functions. Insect Biochem Mol Biol 38 (10):923–931

    CAS  Google Scholar 

  • Stevens L, Giordano R, Fialho RF (2001) Male-killing, nematode infections, bacteriophage infection, and virulence of cytoplasmic bacteria in the genus Wolbachia. Annu Rev Ecol Evol Syst 32:519–545

    Google Scholar 

  • Migeon A (2015) The Jean Gutierrez spider mite collection. ZooKeys 489:15–24

    Google Scholar 

  • Moran NA (2006) Symbiosis. Curr Biol 16(20):R866–R871

    CAS  PubMed  Google Scholar 

  • Regassa LB, Gasparich GE (2006) Spiroplasmas: evolutionary relationships and biodiversity. Front Biosci 11:2983–3002

    CAS  PubMed  Google Scholar 

  • Rodrigues J, Brayner FA, Alves LC, Dixit R, Barillas-Mury C (2010) Hemocyte differentiation mediates innate immune memory in Anopheles gambiae mosquitoes. Science 329:1353–1355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sadeghi-Namaghi H (2010) Mites (Acari: Prostigmata and Mesostigmata) inhabiting green planting in urban environment of North-Eastern Iran, including six new records. Munis Entomol Zool 5(1):123–130

    Google Scholar 

  • Sanada-Morimura S, Matsumura M, Noda H (2013) Male killing caused by a Spiroplasma symbiont in the small brown planthopper, Laodelphax striatellus. J Hered 104(6):821–829

    PubMed  Google Scholar 

  • Schwarz RS, Teixeira EW, Tauber JP, Birke JM, Martins MF, Fonseca I, Evans JD (2014) Honey bee colonies act as reservoirs for two Spiroplasma facultative symbionts and incur complex, multiyear infection dynamics. MicrobiologyOpen 3:341–355

    PubMed  PubMed Central  Google Scholar 

  • Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12(6):R60

    PubMed  PubMed Central  Google Scholar 

  • Staudacher H, Schimmel BCJ, Lamers MM, Wybouw N, Groot AT, Kant MR (2017) Independent effects of a herbivore’s bacterial symbionts on its performance and induced plant defences. Int J Mol Sci. https://doi.org/10.3390/ijms18010182

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsushima Y, Nakamura K, Tagami Y, Miura K (2015) Mating rates and the prevalence of male-killing Spiroplasma in Harmonia axyridis (Coleoptera: Coccinellidae). Entomol Sci 18(2):217–220

    Google Scholar 

  • Vala F, Egas M, Breeuwer JAJ, Sabelis MW (2004) Wolbachia affects oviposition and mating behaviour of its spider mite host. J Evol Biol 17:692–700

    CAS  PubMed  Google Scholar 

  • Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751

    CAS  PubMed  Google Scholar 

  • White JR, Nagarajan N, Pop M (2009) Statistical methods for detecting differentially abundant featuresin clinical metagenomic samples. PLoS Comput Biol 5:e1000352

    PubMed  PubMed Central  Google Scholar 

  • Wong AC, Chaston JM, Douglas AE (2013) The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis. ISME J 7:1922–1932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie J, Vilchez I, Mateos M (2010) Spiroplasma Bacteria enhance survival of Drosophila hydei attacked by the parasitic wasp Leptopilina heterotoma. PLoS ONE 5(8):e12149

    PubMed  PubMed Central  Google Scholar 

  • Xie RR, Sun JT, Xue XF, Hong XY (2016) Cytoplasmic incompatibility and fitness benefits in the two-spotted spider mite Tetranychus urticae (red form) doubly infected with Wolbachia and Cardinium. Syst Appl Acarol 21:1161–1173

    Google Scholar 

  • Yang K, Xie K, Zhu YX, Huo SM, Hoffman AA, Hong XY (2020) Wolbachia dominate Spiroplasma in the co-infected spider mite Tetranychus truncatus. Insect Mol Biol 29:19–37

    CAS  PubMed  Google Scholar 

  • Zélé F, Santos I, Matos M, Weill M, Vavre F, Magalhães S (2020) Endosymbiont diversity in natural populations of Tetranychus mites is rapidly lost under laboratory conditions. Heredity. https://doi.org/10.1038/s41437-020-0297-9

    Article  PubMed  Google Scholar 

  • Zhang YK, Chen YT, Yang K, Qiao GX, Hong XY (2016) Screening of spider mites (Acari: Tetranychidae) for reproductive endosymbionts reveals links between co-infection and evolutionary history. Sci Rep 6:27900

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao DX, Zhang XF, Hong XY (2013a) Host–symbiont interactions in spider mite Tetranychus truncatus doubly Infected with Wolbachia and Cardinium. Environ Entomol 42(3):445–452

    PubMed  Google Scholar 

  • Zhao DX, Zhang XF, Chen DS, Zhang YK, Hong XY (2013b) Wolbachia–host interactions: host mating patterns affect Wolbachia density dynamics. PLoS ONE 8:e66373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Zhang S, Luo JY, Wang CY, Lv LM, Cui JJ (2016) Bacterial communities of the cotton aphid Aphis gossypii associated with Bt cotton in northern China. Sci Rep 6:22958

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu YX, Song YL, Zhang YK, Hoffman AA, Zhou JC, Sun JT, Hong XY (2018) Incidence of facultative bacterial endosymbionts in spider mites associated with local environments and host plants. Appl Environ Microbiol 84:e02546–e02517

    PubMed  PubMed Central  Google Scholar 

  • Zhu YX, Song ZR, Huo SM, Yang K, Hong XY (2020) Variation in the microbiome of the spider mite Tetranychus truncatus with sex, instar, and endosymbiont infection. FEMS Microbiol Ecol 96:fiaa004

    CAS  PubMed  Google Scholar 

  • Zug R, Hammerstein P (2015) Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biol Rev 90:89–111

    PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank Xie Kang and Chang-Wu Peng of Nanjing Agricultural University, China, for their help with the sample collection and rearing of spider mites. We thank the anonymous reviewers for their insightful comments which helped us to improve the manuscript.

Funding

This study was supported by the National Natural Science Foundation of China (32020103011, 31871976, and 31901888).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yue Hong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to disclose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10493_2021_589_MOESM1_ESM.tif

(TIF 2782 kb) Fig. S1 Rarefaction analysis of bacterial 16S rRNA gene libraries from all female Tetranychus truncatus samples. Operational taxonomic units (OTUs) were grouped with a 97% similarity

10493_2021_589_MOESM2_ESM.tif

(TIF 2337 kb) Fig. S2 Venn diagram of OTUs found in female of four Tetranychus truncatus strains. A total of 2722 OTUs were observed and distributed in 4 spider mite strains

10493_2021_589_MOESM3_ESM.tif

(TIF 3245 kb) Fig. S3 Alpha-diversity index of female Tetranychus truncatus: (a) ACE, (b) Chao1, (c) Shannon, and (d) Simpson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Chen, H., Bing, XL. et al. Wolbachia and Spiroplasma could influence bacterial communities of the spider mite Tetranychus truncatus. Exp Appl Acarol 83, 197–210 (2021). https://doi.org/10.1007/s10493-021-00589-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-021-00589-4

Keywords

Navigation