Skip to main content
Log in

Comparing four methods of rearing Varroa destructor in vitro

Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

The parasitic mite Varroa destructor Anderson and Trueman continues to devastate western honey bee (Apis mellifera L.) colonies throughout most of the world where they are managed. The development of a method to rear Varroa in vitro would allow for year-round Varroa research, rapidly advancing our progress towards controlling the mite. We created two separate experiments to address this objective. First, we determined which of four in vitro rearing methods yields the greatest number of Varroa offspring. Second, we attempted to improve the rearing rates achieved with that method. The four methods tested included (1) rearing Varroa on honey bee pupae in gelatin capsules, (2) rearing Varroa on in vitro-reared honey bees, (3) group rearing Varroa on honey bee pupae in Petri dishes, and (4) providing Varroa a bee-derived diet. The number of reproducing females and the number of fully mature offspring were significantly higher in the gelatin capsules maintained at 75% RH than in any other method. A 2 × 3 full factorial design was used to test combinations of gelatin capsule size (6 and 7 mm diameter) and relative humidity (65, 75, or 85%) on Varroa rearing success. Varroa reproduction and survival were significantly higher in 7-mm-diameter gelatin capsules maintained at 75% RH than in those maintained in 6-mm capsules and at the other humidities. By identifying factors that influence Varroa reproductive success in vitro, this work provides an important foundation for the development of future rearing protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abbas ND, Engels W (1989) Rearing of Varroa in artificial cells on drones. In: Cavalloro R (ed) Present status of varroatosis in Europe: and progress of the Varroa mite control. Proceedings of a meeting of the EC Experts Group, EC Publ, Lux, pp 223–238

  • Amdam GV, Omholt SW (2002) The regulatory anatomy of honeybee lifespan. J Theor Biol 216:209–228

    PubMed  Google Scholar 

  • Aumeier P, Rosenkranz P, Francke W (2002) Cuticular volatiles, attractivity of worker larvae and invasion of brood cells by Varroa mites. A comparison of Africanized and European honey bees. Chemoecology 12:65–75

    CAS  Google Scholar 

  • Brodschneider R, Brus J, Danihlík J (2019) Comparison of apiculture and winter mortality of honey bee colonies (Apis mellifera) in Austria and Czechia. Agric Ecosyst Environ 274:24–32

    Google Scholar 

  • Bruce W, Henegar R, Hackett K (1991) An artificial membrane for in vitro feeding of Varroa jacobsoni and Acarapis woodi, mite parasites of honey bees. Apidologie 22(5):503–507

    Google Scholar 

  • Bruce WA, Chiesa F, Marchetti S, Griffiths DA (1988) Laboratory feeding of Varroa jacobsoni Oudemans on natural and artificial diets (Acari: Varroidae). Apidologie 19:209–218

    Google Scholar 

  • Calderone NW, Kuenen LPS (2001) Effects of western honey bee (Hymenoptera: Apidae) colony, cell, type, and larval sex on host acquisition by female Varroa destructor (Acari: Varroidae). J Econ Entomol 94:1022–1030

    CAS  PubMed  Google Scholar 

  • Calderone NW, Lin S (2001) Behavioral responses of Varroa destructor (Acari: Varroidae) to extracts of larvae, cocoons and brood food of worker and drone honey bees, Apis mellifera (Hymenoptera: Apidae). Physiol Entomol 26:341–350

    CAS  Google Scholar 

  • Castilhos D, Bergamo GC, Gramacho KP, Gonçalves LS (2019) Bee colony losses in Brazil: a 5-year online survey. Apidologie 50:263–272

    Google Scholar 

  • Chiesa F, Milani N (1988) Some preliminary observations on the behavior of Varroa jacobsoni Oud. on its natural host under laboratory conditions. In: Cavalloro R (ed) European research on varroatosis control: proceedings of a meeting of the EC experts' group, CEC, Lux, pp 113–124

  • Chiesa F, Milani N, D'Agaro M (1989) Observations of the reproductive behavior of Varroa jacobsoni Oud: Techniques and preliminary results. In: Cavalloro R (ed) Present status of Varroatosis in Europe and progress of the Varroa mite control: proceedings of a meeting of the EC experts' group, CEC, Lux, pp 213–222

  • Crailsheim K (1990) The protein balance of the honey-bee worker. Apidologie 21:417–429

    CAS  Google Scholar 

  • Crailsheim K, Brodschneider R, Aupinel P, Behrens D, Genersch E, Vollmann J et al (2013) Standard methods for artificial rearing of Apis mellifera larvae. J Apic Res 52:1–16

    Google Scholar 

  • Dietemann V, Pflugfelder J, Anderson D, Charriere JD, Chejanovsky N, Dainat B et al (2012) Varroa destructor: research avenues towards sustainable control. J Apic Res 51:125–132

    Google Scholar 

  • Dietemann V, Nazzi F, Martin SJ, Anderson DL, Locke B, Delaplane KS et al (2013) Standard methods for Varroa research. J Apic Res 52:1–54

    Google Scholar 

  • Donzé G, Guerin PM (1994) Behavioral-attributes and parental care of Varroa mites parasitizing honeybee brood. Behav Ecol Sociobiol 34:305–319

    Google Scholar 

  • Donzé G, Guerin PM (1997) Time-activity budgets and space structuring by the different life stages of Varroa jacobsoni in capped brood of the honey bee, Apis mellifera. J Insect Behav 10:371–393

    Google Scholar 

  • Donzé G, Herrmann M, Bachofen B, Guerin PM (1996) Effect of mating frequency and brood cell infestation rate on the reproductive success of the honeybee parasite Varroa jacobsoni. Ecol Entomol 21:17–26

    Google Scholar 

  • Donzé G, Schnyder-Candrian S, Bogdanov S, Diehl PA, Guerin PM, Kilchenman V et al (1998) Aliphatic alcohols and aldehydes of the honey bee cocoon induce arrestment behavior in Varroa jacobsoni (Acari: Mesostigmata), an ectoparasite of Apis mellifera. Arch Insect Biochem Physiol 37:129–145

    Google Scholar 

  • Egekwu NI, Posada F, Sonenshine DE, Cook SC (2018) Using an in vitro system for maintaining Varroa destructor mites on Apis mellifera pupae as hosts; studies of mite longevity and feeding behavior. Exp Appl Acarol 74:301–315

    PubMed  Google Scholar 

  • Ellis MB, Nicolson SW, Crewe RM, Dietemann V (2008) Hygropreference and brood care in the honey bee (Apis mellifera). J Insect Physiol 54(12):1516–1521

    CAS  PubMed  Google Scholar 

  • Fluri P, Luscher M, Wille H, Gerig L (1982) Changes in weight of the pharyngeal gland and hemolymph titers of juvenile-hormone, protein and vitellogenin in worker honey bees. J Insect Physiol 28:61–68

    CAS  Google Scholar 

  • Free JB, Spencer-Booth Y (1959) The longevity of worker honey bees (Apis mellifera). Proc R Entomol Soc Lond 34A:141–150

    Google Scholar 

  • Frey E, Rosenkranz P (2014) Autumn invasion rates of Varroa destructor (Mesostigmata: Varroidae) into honey bee (Hymenoptera: Apidae) colonies and the resulting increase in mite populations. J Econ Entomol 107:508–515

    PubMed  Google Scholar 

  • Fuchs S (1990) Preference for drone brood cells by Varroa jacobsoni Oud in colonies of Apis mellifera carnica. Apidologie 21:193–199. https://doi.org/10.1051/apido:19900304

    Article  Google Scholar 

  • Garrido C, Rosenkranz P, Paxton RJ, Gonçalves LS (2003) Temporal changes in Varroa destructor fertility and haplotype in Brazil. Apidologie 34:535–541

    Google Scholar 

  • Goetz B, Koeniger N (1993) The distance between larva and cell opening triggers brood cell invasion by Varroa jacobsoni. Apidologie 24:67–72

    Google Scholar 

  • Gonzalez-Cabrera J, Rodriguez-Vargas S, Davies TGE, Field LM, Schmehl D, Ellis JD et al (2016) Novel mutations in the voltage-gated sodium channel of pyrethroid-resistant Varroa destructor populations from the Southeastern USA. PLoS ONE 11(5):e0155332

    PubMed  PubMed Central  Google Scholar 

  • Gregorc A, Adamczyk J, Kapun S, Planinc I (2016) Integrated Varroa control in honey bee (Apis mellifera carnica) colonies with or without brood. J Apic Res 55:253–258

    Google Scholar 

  • Grozinger CM, Robinson GE (2015) The power and promise of applying genomics to honey bee health. Curr Opin Insect Sci 10:124–132

    PubMed  PubMed Central  Google Scholar 

  • Hartfelder K, Bitondi MMG, Brent CS, Guidugli-Lazzarini KR, Simões ZLP, Stabentheiner A et al (2013) Standard methods for physiology and biochemistry research in Apis mellifera. J Apic Res 52:1–48

    Google Scholar 

  • Häußermann CK, Ziegelmann B, Rosenkranz P (2016) Spermatozoa capacitation in female Varroa destructor and its influence on the timing and success of female reproduction. Exp Appl Acarol 69:371–387

    PubMed  Google Scholar 

  • Huang ZY, Robinson GE (1995) Seasonal changes in juvenile hormone titers and rates of biosynthesis in honey bees. J Comp Physiol B-Biochem Sys Environ Physiol 165:18–28

    CAS  Google Scholar 

  • Iwasaki JM, Barratt BIP, Lord JM, Mercer AR, Dickinson KJM (2015) The New Zealand experience of Varroa invasion highlights research opportunities. Ambio 44(7):694–704

    PubMed  PubMed Central  Google Scholar 

  • Kirrane MJ, de Guzman LI, Holloway B, Frake AM, Rinderer TE, Whelan PM (2015) Phenotypic and genetic analyses of the varroa sensitive hygienic trait in Russian honey bee (Hymenoptera: Apidae) colonies. PLoS ONE 10(4):e0116672

    PubMed  PubMed Central  Google Scholar 

  • Kulhanek K, Steinhauer N, Rennich K, Caron DM, Sagili RR, Pettis JS et al (2017) A national survey of managed honey bee 2015–2016 annual colony losses in the USA. J Apic Res 56(4):328–340

    Google Scholar 

  • Le Conte Y, Arnold G, Trouiller J, Masson C (1990) Identification of a brood pheromone in honeybees. Naturwissenschaften 77:334–336

    Google Scholar 

  • Locke B, Fries I (2011) Characteristics of honey bee colonies (Apis mellifera) in Sweden surviving Varroa destructor infestation. Apidologie 42(4):533–542

    Google Scholar 

  • Martin SJ (1994) Ontogeny of the mite Varroa jacobsoni Oud in worker brood of the honeybee Apis mellifera L. under natural conditions. Exp Appl Acarol 18:87–100

    Google Scholar 

  • Martin SJ (1995) Ontogeny of the mite Varroa jacobsoni Oud in drone brood of the honeybee Apis mellifera L. under natural conditions. Exp Appl Acarol 19:199–210

    Google Scholar 

  • Maurizio A (1950) The influence of pollen feeding and brood rearing on the length of life and physiological conditions of the honeybee. Bee World 31:9–12

    Google Scholar 

  • Meikle WG, Sammataro D, Neumann P, Pflugfelder J (2012) Challenges for developing pathogen-based biopesticides against Varroa. Apidologie 43:501–514

    Google Scholar 

  • Morawetz L, Köglberger H, Griesbacher A, Derakhshifar I, Crailsheim K, Brodschneider R et al (2019) Health status of honey bee colonies (Apis mellifera) and disease-related risk factors for colony losses in Austria. PLoS ONE 14(7):e0219293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mortensen AN, Ellis JD (2018) The effects of artificial rearing environment on the behavior of adult honey bees, Apis mellifera L. Behav Ecol Sociobiol 72:92. https://doi.org/10.1007/s00265-018-2507-5

    Article  Google Scholar 

  • Mortensen AN, Bruckner S, Williams GR, Ellis JD (2019) Comparative morphology of adult honey bees, Apis mellifera, reared in vitro or by their parental colony. J Apic Res 58(4):580–586. https://doi.org/10.1080/00218839.2019.1616976

    Article  Google Scholar 

  • Nazzi F, Milani N (1994) A technique for reproduction of Varroa jacobsoni Oud under laboratory conditions. Apidologie 25:579–584

    Google Scholar 

  • Nazzi F, Le Conte Y (2016) Ecology of Varroa destructor, the major ectoparasite of the Western honey bee, Apis mellifera. Ann Rev Entomol 61:417–432

    CAS  Google Scholar 

  • Piou V, Tabart J, Urrutia V, Hemptinne JL, Vetillard A (2016) Impact of the phoretic phase on reproduction and damage caused by Varroa destructor (Anderson and Trueman) to its host, the European honey bee (Apis mellifera L.). PLoS ONE 11:e0153482

    PubMed  PubMed Central  Google Scholar 

  • Ramsey SD, Ochoa R, Bauchan G, Gulbronson C, Mowery JD, Cohen A et al (2019) Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. PNAS 116:1792–1801

    CAS  PubMed  Google Scholar 

  • Rosenkranz P, Aumeier P, Ziegelmann B (2010) Biology and control of Varroa destructor. J Insect Pathol 103:S96–S119

    Google Scholar 

  • Schmehl DR, Tome HVV, Mortensen AN, Martins GF, Ellis JD (2016) Protocol for the in vitro rearing of honey bee (Apis mellifera L.) workers. J Apic Res 55:113–129

    Google Scholar 

  • Seitz N, Traynor KS, Steinhauer N, Rennich K, Wilson ME, Ellis JD et al (2016) A national survey of managed honey bee 2014–2015 annual colony losses in the USA. J Apic Res 54:292–304

    Google Scholar 

  • Szumilas M (2010) Explaining odds ratios. J Can Acad Child Adolesc Psychiatry 19(3):227–229

    PubMed  PubMed Central  Google Scholar 

  • Thompson CE, Biesmeijer JC, Allnutt TR, Pietravalle S, Budge GE (2014) Parasite pressures on feral honey bees (Apis mellifera sp.). PLoS ONE 9:e105164

    PubMed  PubMed Central  Google Scholar 

  • Trouiller J, Milani N (1999) Stimulation of Varroa jacobsoni Oud. oviposition with semiochemicals from honeybee brood. Apidologie 30:3–12

    Google Scholar 

  • van der Zee R, Gray A, Pisa L, de Rijk T (2015) An observational study of honey bee colony winter losses and their association with Varroa destructor, neonicotinoids and other risk factors. PLoS ONE 10:e0131611

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Amin Eimanifar and Tomas Bustamante for reviewing the manuscript in advance of submission. We gratefully thank Logan Cutts for managing the test honey bee colonies, as well as Brandi Simmons and Branden Stanford for providing technical assistance during the experiment (all Entomology and Nematology Department, University of Florida). This research was supported with funds provided by the National Honey Board to C. Jack and J. Ellis and a scholarship to C. Jack from The Costco-Apis Scholarship Program. The funding agencies were not involved in any aspect of the study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cameron J. Jack or James D. Ellis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jack, C.J., Dai, PL., van Santen, E. et al. Comparing four methods of rearing Varroa destructor in vitro. Exp Appl Acarol 80, 463–476 (2020). https://doi.org/10.1007/s10493-020-00488-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-020-00488-0

Keywords

Navigation