Coexistence of genetically different Varroa destructor in Apis mellifera colonies

Abstract

The aim of this study was to investigate the genetic diversity of Varroa destructor parasitizing Apis mellifera colonies and to test for possible host–parasite association at the mitochondrial DNA (mtDNA) level. Six A. mellifera haplotypes (including a novel C2aa) and five haplotypes of V. destructor were detected in 29 analyzed colonies from eight sampling sites in Serbia. We revealed the presence of the K and S1 haplotypes as well as KS1 and KP1 heteroplasmic mite individuals in all localities, while the P1 haplotype was only found in four sampling sites. Significant differences in V. destructor genetic diversity were found at both apiary and colony levels, with mite haplotypes coexisting in almost all tested colonies. In addition, a significant correlation between the number of analyzed mites per colony and the number of identified V. destructor haplotypes was observed. However, no significant host–parasite relationship was found, suggesting that mites bearing different haplotypes as well as those heteroplasmic individuals are well adapted to the host, A. mellifera, independently of the identified haplotype present in each colony. Our results will contribute to future population and biogeographic studies concerning V. destructor infesting A. mellifera, as well as to better understanding their host–parasite relationship.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Anderson DL, Morgan MJ (2007) Genetic and morphological variation of bee-parasitic Tropilaelaps mites (Acari: Laelapidae): new and re-defined species. Exp Appl Acarol 43(1):1–24

    Article  PubMed  Google Scholar 

  2. Anderson DL, Trueman JWH (2000) Varroa jacobsoni (Acari: Varroidae) is more than one species. Exp Appl Acarol 24(3):165–189

    Article  CAS  PubMed  Google Scholar 

  3. Beaurepaire AL, Ellis JD, Krieger KJ, Moritz RF (2017) Association of Varroa destructor females in multiply infested cells of the honeybee Apis mellifera. Insect Sci. https://doi.org/10.1111/1744-7917.12529

    Article  PubMed  Google Scholar 

  4. Beaurepaire AL, Truong TA, Fajardo AC, Dinh TQ, Cervancia C, Moritz RF (2015) Host specificity in the honeybee parasitic mite, Varroa spp. in Apis mellifera and Apis cerana. PLoS ONE 10(8):e0135103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chávez-Galarza J, Garnery L, Henriques D, Neves CJ, Loucif-Ayad W, Jonhston JS, Pinto MA (2017) Mitochondrial DNA variation of Apis mellifera iberiensis: further insights from a large-scale study using sequence data of the tRNA leu-cox2 intergenic region. Apidologie 48(4):533–544

    Article  CAS  Google Scholar 

  6. Coroian CO, Muñoz I, Schlüns EA, Paniti-Teleky OR, Erler S, Furdui EM, Mărghitaş LA, Dezmirean DS, Schlüns H, De la Rúa P, Moritz RFA (2014) Climate rather than geography separates two European honeybee subspecies. Mol Ecol 23(9):2353–2361

    Article  CAS  PubMed  Google Scholar 

  7. De la Rúa P, Jaffé R, Dall'Olio R, Muñoz I, Serrano J (2009) Biodiversity, conservation and current threats to European honeybees. Apidologie 40(3):263–284

    Article  Google Scholar 

  8. Dynes TL, De Roode JC, Lyons JI, Berry JA, Delaplane KS, Brosi BJ (2017) Fine scale population genetic structure of Varroa destructor, an ectoparasitic mite of the honey bee (Apis mellifera). Apidologie 48(1):93–101

    Article  Google Scholar 

  9. Evans JD, Schwarz RS, Chen YP, Budge G, Cornman RS et al (2013) Standard methods for molecular research in Apis mellifera. J Apic Res 52(4):1–54

    Article  CAS  Google Scholar 

  10. Farjamfar M, Saboori A, González-Cabrera J, Rodríguez CSH (2018) Genetic variability and pyrethroid susceptibility of the parasitic honey bee mite Varroa destructor (Acari: Varroidae) in Iran. Exp Appl Acarol 76(1):139–148

    Article  CAS  PubMed  Google Scholar 

  11. Gajić B, Radulovic Z, Stevanovic J, Kulisic Z, Vucicevic M, Simeunovic P, Stanimirovic Z (2013) Variability of the honey bee mite Varroa destructor in Serbia, based on mtDNA analysis. Exp Appl Acarol 61(1):97–105

    Article  CAS  PubMed  Google Scholar 

  12. Gajić B, Stevanović J, Radulović Ž, Kulišić Z, Vejnović B, Glavinić U, Stanimirović Z (2016) Haplotype identification and detection of mitochondrial DNA heteroplasmy in Varroa destructor mites using ARMS and PCR–RFLP methods. Exp Appl Acarol 70(3):287–297

    Article  CAS  PubMed  Google Scholar 

  13. Garnery L, Vautrin D, Cornuet JM, Solignac M (1991) Phylogenetic relationships in the genus Apis inferred from mitochondrial DNA sequence data. Apidologie 22(1):87–92

    Article  CAS  Google Scholar 

  14. Garrido C, Rosenkranz P, Paxton RJ, Gonçalves LS (2003) Temporal changes in Varroa destructor fertility and haplotype in Brazil. Apidologie 34(6):535–541

    Article  Google Scholar 

  15. Genersch E, Aubert M (2010) Emerging and re-emerging viruses of the honey bee (Apis mellifera L.). Vet Res 41(6):54. https://doi.org/10.1051/vetres/2010027

    Article  PubMed  PubMed Central  Google Scholar 

  16. Genersch E, Von der Ohe W, Kaatz H, Schroeder A, Otten C et al (2010) The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie 41(3):332–352

    Article  CAS  Google Scholar 

  17. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp 41:95–98

    CAS  Google Scholar 

  18. Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68(1–2):87–112

    Article  Google Scholar 

  19. Higes M, Martín R, Meana A (2006) Nosema ceranae, a new microsporidian parasite in honeybees in Europe. J Invertebr Pathol 92(2):93–95

    Article  CAS  PubMed  Google Scholar 

  20. Lolin M (1977) First case of varoatosis in our country. Pcelar 1–2:14–15 [in Serbian]

    Google Scholar 

  21. Maggi M, Medici S, Quintana S, Ruffinengo S, Marcángeli J, Martinez PG, Fuselli S, Eguaras M (2012) Genetic structure of Varroa destructor populations infesting Apis mellifera colonies in Argentina. Exp Appl Acarol 56(4):309–318

    Article  CAS  PubMed  Google Scholar 

  22. Meixner MD, Pinto MA, Bouga M, Kryger P, Ivanova E, Fuchs S (2013) Standard methods for characterising subspecies and ecotypes of Apis mellifera. J Apic Res 52(4):1–28

    Article  Google Scholar 

  23. Milankov V, Ludoški J, Stahls G, Stamenković J, Vujić A (2009) High molecular and phenotypic diversity in the Merodon avidus complex (Diptera, Syrphidae): cryptic speciation in a diverse insect taxon. Zool J Linn Soc 155(4):819–833

    Article  Google Scholar 

  24. Moritz RF, Härtel S, Neumann P (2005) Global invasions of the western honeybee (Apis mellifera) and the consequences for biodiversity. Ecoscience 12(3):289–301

    Article  Google Scholar 

  25. Muñoz I, Dall’Olio R, Lodesani M, De la Rúa P (2009) Population genetic structure of coastal Croatian honeybees (Apis mellifera carnica). Apidologie 40(6):617–626

    Article  CAS  Google Scholar 

  26. Muñoz I, Garrido-Bailón E, Martín-Hernández R, Meana A, Higes M, De la Rúa P (2008) Genetic profile of Varroa destructor infesting Apis mellifera iberiensis colonies. J Apic Res 47(4):310–313

    Article  Google Scholar 

  27. Muñoz I, Stevanovic J, Stanimirovic Z, De la Rúa P (2012) Genetic variation of Apis mellifera from Serbia inferred from mitochondrial analysis. J Apic Sci 56(1):59–69

    Google Scholar 

  28. Navajas M, Anderson DL, De Guzman LI, Huang ZY, Clement J, Zhou T, Le Conte Y (2010) New Asian types of Varroa destructor: a potential new threat for world apiculture. Apidologie 41(2):181–193

    Article  CAS  Google Scholar 

  29. Nedić N, Francis RM, Stanisavljević L, Pihler I, Kezić N, Bendixen C, Kryger P (2014) Detecting population admixture in honey bees of Serbia. J Apic Res 53(2):303–313

    Article  Google Scholar 

  30. Pirk CW, Crewe RM, Moritz RF (2017) Risks and benefits of the biological interface between managed and wild bee pollinators. Funct Ecol 31(1):47–55

    Article  Google Scholar 

  31. Ramsey SD, Ochoa R, Bauchan G, Gulbronson C, Mowery JD, Cohen A, Lim D, Joklik J, Cicero JM, Ellis JD, Hawthorne D, van Engelsdorp D (2019) Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proc Natl Acad Sci USA 116(5):1792–1801

    Article  CAS  PubMed  Google Scholar 

  32. Roberts JMK, Anderson DL, Tay WT (2015) Multiple host shifts by the emerging honeybee parasite, Varroa jacobsoni. Mol Ecol 24(10):2379–2391

    Article  CAS  PubMed  Google Scholar 

  33. Rortais A, Arnold G, Alburaki M, Legout H, Garnery L (2011) Review of the DraI COI-COII test for the conservation of the black honeybee (Apis mellifera mellifera). Cons Gen Res 3(2):383–391

    Article  Google Scholar 

  34. Rosenkranz P, Aumeier P, Ziegelmann B (2010) Biology and control of Varroa destructor. J Invertebr Pathol 103:S96–S119

    Article  PubMed  Google Scholar 

  35. Solignac M, Cornuet JM, Vautrin D, Le Conte Y, Anderson D, Evans J, Cros-Arteil S, Navajas M (2005) The invasive Korea and Japan types of Varroa destructor, ectoparasitic mites of the Western honeybee (Apis mellifera), are two partly isolated clones. Proc R Soc Lond B Biol 272(1561):411–419

    Article  Google Scholar 

  36. Stevanovic J, Stanimirovic Z, Radakovic M, Kovacevic SR (2010) Biogeographic study of the honey bee (Apis mellifera L.) from Serbia, Bosnia and Herzegovina and Republic of Macedonia based on mitochondrial DNA analyses. Rus J Genet 46(5):603–609

    Article  CAS  Google Scholar 

  37. Sušnik S, Kozmus P, Poklukar J, Meglic V (2004) Molecular characterisation of indigenous Apis mellifera carnica in Slovenia. Apidologie 35(6):623–636

    Article  CAS  Google Scholar 

  38. vanEngelsdorp D, Hayes J, Underwood RM, Pettis J (2008) A survey of honey bee colony losses in the US, fall 2007 to spring 2008. PLoS ONE 3(12):e4071

    Article  CAS  PubMed Central  Google Scholar 

  39. Zhou T, Anderson DL, Huang ZY, Huang S, Yao J, Ken T, Zhang Q (2004) Identification of Varroa mites (Acari: Varroidae) infesting Apis cerana and Apis mellifera in China. Apidologie 35(6):645–654

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. III46002) and the 19908-GERM-15 project of Regional Excellence from the Fundación Séneca (Gobierno Regional de Murcia, Spain). Irene Muñoz is supported by Fundación Séneca (Gobierno Regional de Murcia, Spain) through the post-doctoral fellowship “Saavedra Fajardo” (20036/SF/16).

Author information

Affiliations

Authors

Contributions

BG designed the study and wrote the manuscript; BG, IM and PDLR conducted molecular analyses and bioinformatics; NL performed statistical analysis; JS, ZK and ZS helped in interpretation of obtained results and critically revised the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Bojan Gajić.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 352 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gajić, B., Muñoz, I., De la Rúa, P. et al. Coexistence of genetically different Varroa destructor in Apis mellifera colonies. Exp Appl Acarol 78, 315–326 (2019). https://doi.org/10.1007/s10493-019-00395-z

Download citation

Keywords

  • Varroa destructor
  • Apis mellifera
  • Haplotype
  • Heteroplasmy
  • Host–parasite