Advertisement

Experimental and Applied Acarology

, Volume 75, Issue 1, pp 25–40 | Cite as

Study of defense-related gene expression in grapevine infested by Colomerus vitis (Acari: Eriophyidae)

  • Saeid Javadi Khederi
  • Mohammad Khanjani
  • Mansur Gholami
  • Giovanni Luigi Bruno
Article
  • 97 Downloads

Abstract

Real-time quantitative polymerase chain reaction was used to study the expression of some marker genes involved in the interaction between grape (Vitis vinifera L.) and the erineum mite Colomerus vitis Pagenstecher (Acari: Eriophyidae). Potted vines of cultivars Atabaki (resistant to C. vitis), Ghalati (susceptible to C. vitis) and Muscat Gordo (moderately resistant to C. vitis) were infested at the six-leaf stage. The expression of protease inhibitor (PIN), beta-1,3-glucanase (GLU), polygalacturonase inhibitor (PGIP), Vitis vinifera proline-rich protein 1 (PRP1), stilbene synthase (STS), and lipoxygenase (LOX) genes was assessed on young leaves collected 96, 120 and 144 h after mite infestation (hami). As a control, non-infested leaves collected 24 h before mite infestations were used. Differences were detected in expression of the selected genes during the C. vitis–grapevine interaction. The resistant cultivar Atabaki increased the expression of LOX, STS, GLU, PGIP and PRP1 genes during the first 120 hami. On the contrary, in the susceptible Ghalati, all selected genes showed an expression level similar or lower than non-infested leaves. Muscat Gordo increased the expression of all selected genes in comparison with non-infested leaves, but it was lower than in Atabaki. Significant transcript accumulation of PIN gene was detected for Muscat Gordo whereas it was slightly up-regulated in Ghalati and Atabaki. LOX, STS, PIN, GLU, PGIP and PRP1 genes were clearly expressed in response to C. vitis infestation. We therefore infer that expression of PGIP, PIN and PRP1 genes could represent a defense strategy against C. vitis infestations in grapevine leaves.

Keywords

Vitis vinifera Grape erineum mite PR proteins Real-time quantitative PCR Plant resistance 

Notes

Acknowledgements

The authors are grateful to Prof. Enrico de Lillo (University of Bari Aldo Moro, Bari, Italy) for his critical review and valuable comments. This paper is obtained from part of Ph.D. dissertation of the senior author which was financially supported by Bu-Ali Sina University, Hamedan, Iran.

References

  1. Adrian M, Jeandet P, Veneau J, Weston LA, Bessis R (1997) Biological activity of resveratrol, a stilbenic compound from grapevines, against Botrytis cinerea, the causal agent for gray mold. J Chem Ecol 23:1689–1702.  https://doi.org/10.1023/B:JOEC.0000006444.79951.75 CrossRefGoogle Scholar
  2. Agrawal AA, Gorski PM, Tallamy DW (1999) Polymorphism in plant defense against herbivory: constitutive and induced resistance in Cucumis sativus. J Chem Ecol 25(10):2285–2304.  https://doi.org/10.1023/A:1020821823794 CrossRefGoogle Scholar
  3. Anders F (1958) Das galleninduzierende Prinzip Reblaus (Viteus vitifolii Shimer). Zool Anz 22:355–365Google Scholar
  4. Avgin S, Bahadiroğlu G (2004) The effect of Colomerus vitis (Pgst.) (Acarina: Eriophyidae) on the yield and quality of grapes in Islahiye, Gaziantep. J Agric Sci 14(2):73–78. http://tarimdergisi.yyu.edu.tr/say14(2)pdfler/73-78.pdf
  5. Bais JA, Murphy PJ, Dry IB (2000) The molecular regulation of stilbene phytoalexin biosynthesis in Vitis vinifera during grape berry development. Aust J Plant Physiol 27:723.  https://doi.org/10.1071/PP00007 CrossRefGoogle Scholar
  6. Bernard MB, Horne PA, Hoffmann AA (2005) Eriophyid mite damage in Vitis vinifera (grapevine) in Australia: Calepitrimerus vitis and Colomerus vitis (Acari: Eriophyidae) as the common cause of the widespread “restricted spring growth” syndrome. Exp Appl Acarol 35:83–109.  https://doi.org/10.1007/s10493-004-1986-4 CrossRefPubMedGoogle Scholar
  7. Bézier A, Lambert B, Baillieul F (2002) Study of defense related gene expression in grapevine leaves and berries infected with Botrytis cinerea. Eur J Plant Pathol 108:111–120.  https://doi.org/10.1023/A:1015061108045 CrossRefGoogle Scholar
  8. Blank L, Wolf T, Eimert K, Schröder MB (2009) Differential gene expression during hypersensitive response in Phylloxera-resistant rootstock ‘Börner’ using custom oligonucleotide arrays. J Plant Interact 4(4):261–269.  https://doi.org/10.1080/17429140903254697 CrossRefGoogle Scholar
  9. Bronner R, Westphal E, Dreger F (1991) Pathogenesis-related proteins in Solnum dulcamara L. resistant to the gall mite Aceria cladophthirus Nalepa (syn. Eriophyes cladophthirus Nal.). Physiol Mol Plant Pathol 38(2):93–104CrossRefGoogle Scholar
  10. Caprari C, Mattei B, Basile ML, Salvi G, Crescenzi V, De Lorenzo G, Cervone F (1996) Mutagenesis of endopolygalacturonase from Fusarium moniliforme: histidine residue 234 is critical for enzymatic and macerating activities and not for binding to polygalacturonase-inhibiting protein (PGIP). MPMI 9:617–624CrossRefPubMedGoogle Scholar
  11. Cervone F, Hahn MG, De Lorenzo G, Darvill A, Albersheim P (1989) Host–pathogen interactions: XXXIII. A plant protein converts a fungal pathogenesis factor into an elicitor of plant defense responses. Plant Physiol 90(2):542–548CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chamnongpol S, Willekens H, Moeder W, Langebartels C, Sandermann H, Van Montagu A, Inze D, Van Camp W (1998) Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proc Natl Acad Sci 95:5818–5823CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116CrossRefGoogle Scholar
  14. Christeller J, Laing W (2005) Plant serine proteinase inhibitors. Protein Pept Lett 12(5):1–9.  https://doi.org/10.2174/0929866054395329 CrossRefGoogle Scholar
  15. Chung IM, Park MR, Chun JC, Yun SJ (2003) Resveratrol accumulation and resveratrol synthase gene expression in response to abiotic stresses and hormones in peanut plants. Plant Sci 164:103–109CrossRefGoogle Scholar
  16. Craemer C, Saccaggi DL (2013) Frequent quarantine interception in South Africa of grapevine Colomerus species (Trombidiformes: Prostigmata: Eriophyidae): taxonomic and distributional ambiguities. Int J Acarol 39(3):239–243.  https://doi.org/10.1080/01647954.2013.767856 CrossRefGoogle Scholar
  17. Darvill A, Bergmann C, Cervone F, De Lorenzo G, Ham KS, Spiro MD, York WS, Albersheim P (1994) Oligosaccharins involved in plant growth and host–pathogen interactions. Biochem Soc Symp 60:89–94PubMedGoogle Scholar
  18. de Bruxelles GL, Roberts MR (2001) Signals regulating multiple responses to wounding and herbivores. Crit Rev Plant Sci 20:487–521CrossRefGoogle Scholar
  19. De Jong AJ, Yakimova ET, Kapchina VM, Woltering EJ (2002) A critical role for ethylene in hydrogen peroxide release during programmed cell death in tomato suspension cells. Planta 214(4):537–545CrossRefGoogle Scholar
  20. de Lillo E (2001) A modified method for eriophyid mite extraction (Acari: Eriophyoidea). Int J Acarol 27(1):67–70CrossRefGoogle Scholar
  21. de Lillo E, Di Palma A, Nuzzaci G (2002) Morphological adaptations of mite chelicerae to different trophic activities (Acari). Entomol Bari 35(2001):125–180Google Scholar
  22. De Lorenzo G, D’Ovidio R, Cervone F (2001) The role of polygalacturonase-inhibiting proteins (PGIPs) in defense against phytopathogenic fungi. Annu Rev Phytopathol 39:313–336.  https://doi.org/10.1146/annurev.phyto.39.1.313 CrossRefPubMedGoogle Scholar
  23. Díaz-Riquelme J, Zhurov V, Rioja C, Pérez-Moreno I, Torres-Pérez R, Grimplet J, Carbonell-Bejerano P, Bajda S, Van Leeuwen T, Martínez-Zapater JM, Grbic M, Grbic V (2016) Comparative genome-wide transcriptome analysis of Vitis vinifera responses to adapted and non-adapted strains of two-spotted spider mite, Tetranychus urticae. BMC Genomics 22(17):74.  https://doi.org/10.1186/s12864-016-2401-3 CrossRefGoogle Scholar
  24. Divol F, Vilaine F, Thibivilliers S, Kusiak C, Sauge MH, Dinant S (2007) Involvement of the Xyloglucan endotransglycosylase/hydrolases encoded by celery XTH1 and Arabidopsis XTH33 in the phloem response to aphids. Plant Cell Environ 30:187–201.  https://doi.org/10.1111/j.1365-3040.2006.01618.x CrossRefPubMedGoogle Scholar
  25. Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097.  https://doi.org/10.1105/tpc.7.7.1085 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Duso C, de Lillo E (1996) Damage and control of Eriophyoid mites in crops: 3.2.5 grape. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites—their biology, natural enemies and control. World crop pests, vol 6. Elsevier Science Publishing, Amsterdam, pp 571–582CrossRefGoogle Scholar
  27. El-Nady MF, Schröder MB (2003) Cytology of the hypersensitivity reaction in rootstocks—improvement of rootstock breeding. Acta Hort 617:17–23CrossRefGoogle Scholar
  28. Gatehouse JA (2002) Plant resistance towards insect herbivores: a dynamic interaction. New Phytol 156:145–169.  https://doi.org/10.1046/j.1469-8137.2002.00519.x CrossRefGoogle Scholar
  29. Gholami M, Khanjani M, Mirab-balou M (2005) Study on resistance of different cultivars of grape to Colomerus vitis in west of Iran. In: Proceeding of the 4th horticultural science of Iran, Mashhad, pp 183–184Google Scholar
  30. Greenberg JT (1997) Programmed cell death in plant–pathogen interactions. Annu Rev Plant Phys 48:525–545.  https://doi.org/10.1146/annurev.arplant.48.1.525 CrossRefGoogle Scholar
  31. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347:1–32Google Scholar
  32. Hoy MA (2011) Agricultural acarology. Introduction to integrated mite management. CRC Press, Boca Raton, p 410CrossRefGoogle Scholar
  33. Javadi Khederi S, Khanjani M (2014) Natural predatory survey on vineyards infested by grape erineum mite, Colomerus vitis (Pagenstecher) (Acari: Eriophyidae) in western Iran. J Crop Prot 3:625–630Google Scholar
  34. Javadi Khederi S, de Lillo E, Khanjani M, Gholami M (2014a) Resistance of grapevine to the erineum strain of Colomerus vitis (Acari: Eriophyidae) in western Iran and its correlation with plant features. Exp Appl Acarol 63:15–35.  https://doi.org/10.1007/s10493-014-9778-y CrossRefGoogle Scholar
  35. Javadi Khederi S, Khanjani M, Asali Fayaz B (2014b) Resistance of three grapevine cultivars to Grape Erineum Mite, Colomerus vitis (Acari: Eriophyidae), in field conditions. Persian J Acarol 3(1):63–75.  https://doi.org/10.1080/01647950608684466 Google Scholar
  36. Javadi Khederi S, Khanjani M, Gholami M, de Lillo E (2018a) Sources of resistance to the erineum strain of Colomerus vitis (Acari: Eriophyidae) in grapevine cultivars. Syst Appl Acarol 23(3):405–425.  https://doi.org/10.11158/saa.23.3.1 CrossRefGoogle Scholar
  37. Javadi Khederi S, Khanjani M, Gholami M, de Lillo E (2018b) Impact of the erineum strain of Colomerus vitis (Acari: Eriophyidae) on the development of plants of grapevine cultivars of Iran. Exp Appl Acarol 74(4):347–363.  https://doi.org/10.1007/s10493-018-0245-z CrossRefPubMedGoogle Scholar
  38. Javadi Khederi S, Khanjani M, Gholami M, Panzarino O, de Lillo E (2018c) Influence of the erineum strain of Colomerus vitis (Acari: Eriophyidae) on grape (Vitis vinifera) defense mechanisms. Exp Appl Acarol.  https://doi.org/10.1007/s10493-018-0252-0
  39. Jones TM, Anderson AJ, Albersheim P (1972) Host–pathogen interactions IV. Studies on the polysaccharide-degrading enzymes secreted by Fusarium oxysporum f.sp. lycopersici. Physiol Plant Pathol 2:153–166CrossRefGoogle Scholar
  40. Karami MJ (2012) Characteristics of white grape cultivars of Fars Province, Iran. Seed Plant Improve J 28(3):353–381Google Scholar
  41. Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328.  https://doi.org/10.1146/annurev.arplant.53.100301.135207 CrossRefPubMedGoogle Scholar
  42. Khanjani M, Hadad Irani-Nejad K (2009) Injurious mites of agricultural crops in Iran, 2nd edn. Bu-Ali Sina Univ Press Center, Iran, p 526Google Scholar
  43. Kunugi S, Asari Y, Terai A (2000) Shinkai studies on the grapevine berry inner necrosis virus disease. 2. Transmission of grapevine berry inner necrosis virus by the grape erineum mite Colomerus vitis in Yamanashi. Bull Yamanashi Fruit Tree Exp Stn 10:57–63Google Scholar
  44. León J, Royo J, Vancanneyt G, Sanz C, Silkowski H, Griffiths G, Sánchez-Serrano JJ (2002) Lipoxygenase H1 gene silencing reveals a specific role in supplying fatty acid hydroperoxides for aliphatic aldehyde production. J Biol Chem 277:416–423.  https://doi.org/10.1074/jbc.M107763200 CrossRefPubMedGoogle Scholar
  45. Linder C, Jermini M, Zufferey V (2006) Impact of the erineum mite Colomerus vitis on Muscat. IOBC WPRS 36:273–277Google Scholar
  46. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar
  47. Luchian V, Săvulescu E, Tudose M (2008) Behavior of several varieties of Vitis vinifera L. to the attack caused by Colomerus vitis Pagst. and Tetranychus urticae Koch. Lucrări Ştiinţifice Seria 52:123–127Google Scholar
  48. Ma RZ, Reeze JC, Black LV, Bramel-Cox PJ (1990) Detection of pectinesterase and polygalacturonase from salivary secretions of living greenbugs Schizaphis graminum (Homoptera: Aphididae). J Insect Physiol 36:507–512CrossRefGoogle Scholar
  49. Malagnini V, de Lillo E, Saldarelli P, Beber R, Duso C, Raiola A, Zanotelli L, Valenzano D, Giampetruzzi A, Morelli M, Ratti C, Causin R, Gualandri G (2016) Transmission of grapevine Pinot gris virus by Colomerus vitis (Acari: Eriophyidae) to grapevine. Archiv Virol 161(9):2595–2599CrossRefGoogle Scholar
  50. Mathez F (1965) Contribution à l’étude morphologique et biologique ďEriopltyes vilis Pgsl., agent de l’Erinose de la vigne. Bull Soc Entomol Suisse 37:233–283Google Scholar
  51. Miles PW, Peng Z (1989) Studies on the salivary physiology of plant bugs: detoxification of phytochemicals by the salivary peroxidase of aphids. J Insect Physiol 35:865–872CrossRefGoogle Scholar
  52. Monfreda R, Spagnuolo M (2004) Enzyme activity of an eriophyoid ‘salivary’ secretion: preliminary report of polygalacturonase. Phytophaga 14:611–614Google Scholar
  53. Monfreda R, Nuzzaci G, de Lillo E (2008) Detection, extraction, and collection of Eriophyid mites. Zootaxa 1662:35–43Google Scholar
  54. Nabitya PD, Hausa MJ, Berenbaum MR, De Lucia EH (2013) Leaf-galling phylloxera on grapes reprograms host metabolism and morphology. PNAS 110(41):16663–16668. www.pnas.org/cgi/doi/10.1073/pnas.1220219110
  55. Narvaez-Vasquez J, Florin-Christensen J, Ryan CA (1999) Positional specificity of a phospholipase A activity induced by wounding, systemin, and oligosaccharide elicitors in tomato leaves. Plant Cell 11:2249–2260CrossRefPubMedPubMedCentralGoogle Scholar
  56. Nuzzaci G, Alberti G (1996) Internal anatomy and physiology. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyid mites their biology natural enemies and control. Elsevier, Amsterdam, pp 101–150CrossRefGoogle Scholar
  57. O’Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser HMO, Bowles DJ (1996) Ethylene as a signal mediating the wound response of tomato plants. Science 274(5294):1914–1917CrossRefPubMedGoogle Scholar
  58. Pedigo LP (2006) Entomology and pest management. Prentice Hall, Saddle RiverGoogle Scholar
  59. Penninckx IAMA, Eggermont K, Terras FRG, Thomma BPHJ, Samblanx GWD, Buchala A, Metraux JP, Manners JM, Broekaert WF (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8(12):2309–2323CrossRefPubMedPubMedCentralGoogle Scholar
  60. Petanović R, Kielkiewicz M (2010) Plant–eriophyoid mite interactions: cellular biochemistry and metabolic responses induced in mite-injured plants. Part I. Exp Appl Acarol 51:61–80CrossRefPubMedGoogle Scholar
  61. Porta H, Rocha-Sosa M (2002) Plant lipoxygenases: physiological and molecular features. Plant Physiol 130(1):15–21.  https://doi.org/10.1104/pp.010787 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Powell AL, van Kan J, ten Have A, Visser J, Greve LC, Bennett AB, Labavitch JM (2000) Transgenic expression of pear PGIP in tomato limits fungal colonization. MPMI 13(9):942–950.  https://doi.org/10.1094/MPMI.2000.13.9.942 CrossRefPubMedGoogle Scholar
  63. Radonić A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A (2004) Guideline for reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 313(4):856–862CrossRefPubMedGoogle Scholar
  64. Reuber S, Bomman JF, Weissenbock G (1996) Phenylpropanoid compounds in primary leaf tissues of rye (Secale cereale). Light response of their metabolism and the possible role in UV-B protection. Physiol Plant 97:160–168.  https://doi.org/10.1080/17429140903254697 CrossRefGoogle Scholar
  65. Royo J, Vancanneyt G, Pérez AG, Sanz C, Störmann K, Rosahl S, Sànchez-Serrano JJ (1996) Characterization of three potato lipoxygenases with distinct enzymatic activities and different organ-specific and wound-regulated expression patterns. J Biol Chem 271:21012–21019CrossRefPubMedGoogle Scholar
  66. Ryan CA (1990) Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu Rev Phytopathol 2:425–449CrossRefGoogle Scholar
  67. Ryan CA (2000) The systemin signaling pathway: differential activation of plant defensive genes. Biochim Biophys Acta 1477(1–2):112–121CrossRefPubMedGoogle Scholar
  68. SAS Institute (2003) GLM: a guide to statistical and data analysis—version 9.1. SAS Institute Cary, CaryGoogle Scholar
  69. Schäller G (1960) Untersuchungen über den Aminosäuregehalt des Speicheldrüsensekretes der Reblaus (Viteus [Phylloxera] vitifolii Shimer), Homoptera. Entomol Exp Appl 3:128–136CrossRefGoogle Scholar
  70. Schäller G (1965) Untersuchungen über den β-indolessigsa üregehalt des Speichels von Aphidenarten mit unterschiedlicher Phytopathogenität. Zoologische Jahrbücher (Abteilung Allgemeine Zoologie und Physiologie der Tiere) 71:385–392Google Scholar
  71. Schäller G (1968a) Biochemische Analyse des Aphidenspeichels und seiner Bedeutung für die Gallenbildung. Zoologische Jahrbücher (Abteilung Allgemeine Zoologie und Physiologie der Tiere) 74:54–87Google Scholar
  72. Schäller G (1968b) Untersuchen zur Erzeugung künstlicher Pflanzengallen. Marcellia 25:131–153Google Scholar
  73. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611CrossRefGoogle Scholar
  74. Sharma K (2015) Protease inhibitors in crop protection from insects. Int J Curr Res Aca Rev 3:55–70. http://www.ijcrar.com/vol-3-2/Kanika%20Sharma.pdf
  75. Slepyan EI, Landsberg GS, Maltshenkova NI (1969) The gall of the mite Eriophyes vitis Pgst. (Acarina, Eriophyidae) as its ecological niche. Entomol Rev 48:67–74Google Scholar
  76. Smith CM (2005) Plant resistance to arthropods. Molecular and conventional approaches. Springer, Dordrecht, p 423CrossRefGoogle Scholar
  77. Smith LM, Stafford EM (1948) The bud mite and the erineum mite of grapes. Hilgardia 18(7):317–334CrossRefGoogle Scholar
  78. Sukrasno N, Yeoman MM (1993) Phenylpropanoid metabolism during growth and development of Capsicum frutescens fruits. Phytochemistry 32:839–844CrossRefGoogle Scholar
  79. ten Have A, Mulder W, Visser J, van Kan JA (1998) The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. MPMI 11(10):1009–1016.  https://doi.org/10.1094/MPMI.1998.11.10.1009 CrossRefPubMedGoogle Scholar
  80. Tomoioaga L, Comsa M (2010) Monitoring the population of Eriofizi mites, the species Calepitrimerus vitis and Colomerus vitis, in the vineyards specific conditions of Central Transylvania. Bull UASVM Hortic 67(1):499Google Scholar
  81. Van Loon LC, van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97. http://www.formatex.info/microbiology3/book/1043-1054.pdf
  82. Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Reg 19(2):195–216Google Scholar
  83. Walling LL (2008) Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiol 146:859–866.  https://doi.org/10.1104/pp.107.113142 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Walton VM, Dreves AJ, Gent DH, James DJ, Martin RR, Chambers U, Skinkis PA (2007) Relationship between rust mite Calepitrimerus vitis (Nalepa), bud mite Colomerus vitis (Pagenstecher) (Acari: Eriophyidae) and short shoot syndrome in Oregon vineyards. Int J Acarol 33(4):307–318CrossRefGoogle Scholar
  85. Westphal E, Manson DCM (1996) Feeding effects on host plants: gall formation and other distorsions. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites–their biology, natural enemies and control. Elsevier, Amsterdam, pp 231–250CrossRefGoogle Scholar
  86. Wu GS, Shortt BJ, Lawrence EB, Leon J, Fitzsimmons KC, Levine EB, Raskin I, Shah DM (1997) Activation of host defense mechanisms by elevated production of H2O2 in transgenic plants. Plant Physiol 115(2):427–435CrossRefPubMedPubMedCentralGoogle Scholar
  87. Yoshii H, Imaseki H (1981) Biosynthesis of auxin-induced ethylene. Effects of indole-3-acetic acid, benzyladenine and abscisic acid on endogenous levels of 1-aminocyclopropane-l-carboxylic acid (ACC) and ACC synthase. Plant Cell Physiol 22:369–379Google Scholar
  88. Young TE, Gallie DR, DeMason DA (1997) Ethylene mediated programmed cell death during maize endosperm development of wild-type and shrunken2 genotypes. Plant Physiol 115(2):737–751CrossRefPubMedPubMedCentralGoogle Scholar
  89. Yu B, Yang SF (1979) Auxin-induced ethylene production and its inhibition by aminoethoxyvinylglycine and cobalt ion. Plant Physiol 64(6):1074–1077CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Saeid Javadi Khederi
    • 1
  • Mohammad Khanjani
    • 1
  • Mansur Gholami
    • 2
  • Giovanni Luigi Bruno
    • 3
  1. 1.Department of Plant Protection, Faculty of AgricultureBu-Ali Sina UniversityHamadanIran
  2. 2.Department of Horticulture, Faculty of AgricultureBu-Ali Sina UniversityHamadanIran
  3. 3.Department of Soil, Plant and Food SciencesUniversity of Bari Aldo MoroBariItaly

Personalised recommendations