Experimental and Applied Acarology

, Volume 75, Issue 1, pp 55–67 | Cite as

Sublethal effects of spirodiclofen, abamectin and pyridaben on life-history traits and life-table parameters of two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae)

  • Moosa Saber
  • Zeinab Ahmadi
  • Gholamreza Mahdavinia


Two-spotted spider mite, Tetranychus urticae Koch, is one of the economically most important pests on a wide range of crops in greenhouses and orchards worldwide. Control of T. urticae has been largely based on the use of acaricides. Sublethal effects of spirodiclofen, pyridaben and abamectin were studied on life-table parameters of T. urticae females treated with the acaricides. LC25 values of spirodiclofen, abamectin and pyridaben (3.84, 0.04 and 136.96 µg a.i./ml, respectively) were used for sublethal studies. All acaricides showed significant effects on T. urticae biological parameters including developmental time, survival rate, and fecundity. The females treated with spirodiclofen, abamectin and pyridaben at LC25 exhibited significantly reduced net reproductive rate (R0), finite rate of increase (λ) and intrinsic rate of increase (r). The intrinsic rate of increase in spirodiclofen, abamectin and pyridaben treated groups and control were 0.0138, 0.0273, 0.039 and 0.2481 female offspring per female per day, respectively. The results indicated that sublethal concentrations of tested pesticides strongly affected the life characteristics of spider mite and consequently may influence mite population growth in future generations.


Tetranychus urticae Sublethal effects Life-table parameters Spirodiclofen Abamectin Pyridaben 


  1. Alinejad M, Kheradmand K, Fathipour Y (2014) Sublethal effects of fenazaquin on life table parameters of the predatory mite Amblyseiuss wirskii (Acari: Phytoseiidae). Exp Appl Acarol 64:361–373CrossRefPubMedGoogle Scholar
  2. Ambikadevi D, Samarjit R (1997) Chemical control of red spider mite, Tetranychus cinnabarinus (Boisduval) on okra. J Trop Agric Sci 35:38–40Google Scholar
  3. Ashley JL, Herbert DA, Lewis EE, Brewster CC, Huckaba R (2006) Toxicity of three acaricides to Tetranychusurticae (Tetranychidae: Acari) and Oriusinsidiosus (Anthocoridae: Hemiptera. J Econ Entomol 99(1):54–59CrossRefPubMedGoogle Scholar
  4. Beers EH, Schmidt RA (2014) Impacts of orchard pesticides on Galendromusoccidentalis: lethal and sublethal effects. Crop Prot 56:16–24CrossRefGoogle Scholar
  5. Biondi A, Zappala L, Stark JD, Desneux N (2013) Do biopesticides affect the demographic traits of a parasitoid wasp and its biocontrol services through sublethal effects? PLoS ONE 8(9):1–11CrossRefGoogle Scholar
  6. Chi H (2015) Computer program for the age-stage, two-sex life table analysis. National Chung Hsing University, TaichungGoogle Scholar
  7. Chi H, Su HY (2006) Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environ Entomol 35:10–21CrossRefGoogle Scholar
  8. Daniels RE, Allan JD (1981) Life table evaluation of chronic exposure to a pesticide. Can J Fish Aquat Sci 38:485–494CrossRefGoogle Scholar
  9. Day K, Kaushik NK (1987) An assessment of the chronic toxicity of the synthetic pyrethroid, fenvalerate, to Daphniagaleatamendotae, using life tables. Environ Pollut 44:12–26CrossRefGoogle Scholar
  10. Dekeyser MA (2005) Acaricide mode of action. Pest Manag Sci 61:103–110CrossRefPubMedGoogle Scholar
  11. Delpuech JM, Gareau E, Terrier O, Fouillet P (1998) Sublethal effects of the insecticide chlorpyrifos on sex pheromonal communication of Trichogramma brassicae. Chemosphere 36:1775–1785CrossRefGoogle Scholar
  12. Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman and Hall, New York, p 465CrossRefGoogle Scholar
  13. Elbert A, Bruck E, Sone S, Toledo A (2002) Worldwide use of the new acaricide Envidor® in perennial crops. Pflanzenschutz- Nachrichten Bayer 55:287–304Google Scholar
  14. Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University Press, London, p 383Google Scholar
  15. Goodman D (1982) Optimal life histories, optimal notation, and the value of reproductive value. Am Nat 119:803–823CrossRefGoogle Scholar
  16. Hamedi N, Fathipour Y, Saber M (2010) Sublethal effects of fenpyroximate on life table parameters of the predatory mite Phytoseiu splumifer. Biol Control 55:271–278Google Scholar
  17. Hardman JM, Franklin JL, Beaulieu F, Bostanian NJ (2007) Effects of acaricides, pyrethroids and predator distributions on populations of Tetranychus urticae in apple orchards. Exp Appl Acarol 43:235–253CrossRefPubMedGoogle Scholar
  18. Hayes WJ, Laws ER (1991) Handbook of pesticide toxicology. In handbook of pesticide toxicology. Academic Press, New YorkGoogle Scholar
  19. Huang YB, Chi H (2012) Assessing the application of the Jackknife and Bootstrap techniques to the estimation of the variability of the net reproductive rate and gross reproductive rate: a case study in Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae). J Agric For 61:37–45Google Scholar
  20. Isman MB (2000) Plant essential oils for pest and disease management. Crop Prot 19:603–608CrossRefGoogle Scholar
  21. Kim SS, Seo SG (2001) Relative toxicity of some acaricides to the predatory mite, Amblyseiu swomersleyi and the twospotted spider mite, Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae). Appl Entomol Zool 36(4):509–514CrossRefGoogle Scholar
  22. Kim SS, Yoo SS (2001) Comparative toxicity of some acaricides to the predatory mite, Phytoseiulus persimilis and the twospotted spider mite, Tetranychus urticae. Biol Control 47:563–573Google Scholar
  23. Kim M, Shin D, Suh E, Cho K (2004) An assessment of the chronic toxicity of fenpyroximate and pyridaben toTetranychus urticae using a demographic bioassay. Appl Entomol Zool 39(3):401–409CrossRefGoogle Scholar
  24. Kim M, Sim C, Shin D, Suh E, Cho K (2006) Residual and sublethal effects of fenpyroximate and pyridaben on the instantaneous rate of increase of Tetranychus urticae. Crop Prot 25(6):542–548Google Scholar
  25. Landeros J, Mora N, Badii M, Cerda PA, Flores AE (2002) Effect of sublethal concentrations of avermectin on population parameters of Tetranychus urticaeon strawberry. Southwest Entomol 27:283–289Google Scholar
  26. Li YY, Fan X, Zhang GH, Liu YQ, Chen HQ, Liu H, Wang JJ (2017) Sublethal effects of bifenazate on life history and population parameters of Tetranychus urticae (Acari: Tetranychidae). Syst Appl Acarol 22:148–158CrossRefGoogle Scholar
  27. Marcic D (2003) The effects of clofentezin on life-table parameters in two-spotted spider mite Tetranychus urticae. Exp Appl Acarol 30:249–263CrossRefPubMedGoogle Scholar
  28. Marcic D (2007) Sublethal effects of spirodiclofen on life history and life-table parameters of two-spotted spider mite (Tetreanychus urticae). Exp Appl Acarol 42:211–229CrossRefGoogle Scholar
  29. Marcic D (2012) Acaricides in modern management of plant feeding mites. J Pest Sci 85:395–408CrossRefGoogle Scholar
  30. Marcic D, Ogurlic I, Mutavdzic S, Peric P (2010) The effects of spiromesifen on life history traits and population growth of two-spotted spider mite (Acari: Tetranychidae). Exp Appl Acarol 50:255–267CrossRefPubMedGoogle Scholar
  31. Martinez-Villar E, Francisco Saenz-De-Caezon FJ, Moreno-Grijalba F, Vicente M, Perez-Moreno I (2005) Effects of azadirachtin on the two-spotted mite, Tetranychus urticae (Acari: Tetranychidae). Exp Appl Acarol 35:215–222CrossRefPubMedGoogle Scholar
  32. Mohammadi S, Ziaee M, Seraj A (2016) Sublethal effects of Biomite® on the population growth and life table parameters of Tetranychus turkestani Ugarov and Nikolskii on three cucumber cultivars. Syst Appl Acarol 21(2):218–226CrossRefGoogle Scholar
  33. Nauen R, Stumpf N, Elbert A (2000) Efficacy of BAJ 2740. A new acaricidal tetronic acid derivative, against Tetranychid spider mite species resistant to conventional acaricides. In: Proceedings of the Brighton crop protection conference—pest and diseases, pp 453–458Google Scholar
  34. Parsaeyan E, Safavi SA, Saber M, Poorjavad N (2017) Effects of emamectin benzoate and cypermethrin on the demography of Trichogramma brassicae Bezdenko. Crop Prot 3:1–6Google Scholar
  35. Robertson JL, Worner SP (1990) Population toxicology: Suggestions for laboratory bioassays to predict pesticide efficacy. J Econ Entomol 83:8–12CrossRefGoogle Scholar
  36. Ruberson JR, Nemato H, Hirose Y (1998) Pesticides and conservation of natural enemies in pest management. In: Barbosa P (ed) Conservation biological control. Academic Press, New York, p 396Google Scholar
  37. SAS Institute (2002) SAS/STAT User’s Guide: Statistics, version 6.12. SAS Institute, Cary, NC, USAGoogle Scholar
  38. Shi WB, Jiang Y, Feng MG (2005) Compatibility of ten acaricides with Beauveria bassianaand enhancement of fungal infection to Tetranychus cinnabarinus (Acari: Tetranychidae) eggs by sublethal application rates of pyridaben. Appl Entomol Zool 40(4):659–666CrossRefGoogle Scholar
  39. Stark JD, Banken JA (1999) Importance of population structure at the time of toxicant exposure. Ecotoxicol Environ Saf 42(3):282–287Google Scholar
  40. Stark JD, Banks JE (2003) Population-level effects of pesticides and other toxicants on arthropods. Annu Rev Entomol 48:505–519CrossRefPubMedGoogle Scholar
  41. Stark JD, Rangus T (1994) Lethal and sublethal effects of the neem insecticide, Margosan-O, on pea aphid. J Pest Sci 41:155–160CrossRefGoogle Scholar
  42. Stark JD, Tanigoshi L, Bounfour M, Antonelli A (1997) Reproductive potential: its influence on the susceptibility of a species to pesticides. Ecotoxicol Environ Saf 37:273–279CrossRefPubMedGoogle Scholar
  43. Stumpf N, Nauen R (2001) Cross-resistance, inheritance, and biochemistry of mitochondrial electron transport inhibitor-acaricide resistance in Tetranychusurticae (Acari: Tetranychidae). J Econ Entomol 94:1577–1583CrossRefPubMedGoogle Scholar
  44. Teodoro AV, Fadini MAM, Lemos WP, Guedes RNC, Pallini A (2005) Lethal and sub-lethal selectivity of fenbutatin oxide and sulfur to the predator Iphiseiodes zuluagai (Acari: Phytoseiidae) and its prey, Oligonychus ilicis (Acari: Tetranychidae), in Brazilian coffee plantations. Exp Appl Acarol 36:61–70CrossRefPubMedGoogle Scholar
  45. Tuan SJ, Lin YH, Yang CM, Atlihan R, Saska P, Chi H (2016) Survival and reproductive strategies in two-spotted spider mites: demographic analysis of arrhenotokous parthenogenesis of Tetranychus urticae (Acari: Tetranychidae). J Econ Entomol 109(2):502–509Google Scholar
  46. Van Leeuwen T, Tirry L, Yamamoto A, Nauen R, Dermauw W (2015) The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pest Biochem Physiol 121:12–21Google Scholar
  47. Yin WD et al (2013) Age-stage two-sex life tables of Panonychus ulmi (Acari: Tetranychidae), on different apple varieties. J Econ Entomol 106(5):2118–2125CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Plant Protection, Faculty of AgricultureUniversity of TabrizTabrizIran
  2. 2.Department of Plant Protection, Faculty of AgricultureUniversity of MaraghehMaraghehIran
  3. 3.Department of Chemistry, Faculty of Basic ScienceUniversity of MaraghehMaraghehIran

Personalised recommendations