Experimental and Applied Acarology

, Volume 74, Issue 2, pp 123–138 | Cite as

Identification of spider-mite species and their endosymbionts using multiplex PCR



Spider mites of the genus Tetranychidae are severe crop pests. In the Mediterranean a few species coexist, but they are difficult to identify based on morphological characters. Additionally, spider mites often harbour several species of endosymbiotic bacteria, which may affect the biology of their hosts. Here, we propose novel, cost-effective, multiplex diagnostic methods allowing a quick identification of spider-mite species as well as of the endosymbionts they carry. First, we developed, and successfully multiplexed in a single PCR, primers to identify Tetranychus urticae, T. evansi and T. ludeni, some of the most common tetranychids found in southwest Europe. Moreover, we demonstrated that this method allows detecting multiple species in a single pool, even at low frequencies (up to 1/100), and can be used on entire mites without DNA extraction. Second, we developed another set of primers to detect spider-mite endosymbionts, namely Wolbachia, Cardinium and Rickettsia in a multiplex PCR, along with a generalist spider-mite primer to control for potential failure of DNA amplification in each PCR. Overall, our method represents a simple, cost-effective and reliable method to identify spider-mite species and their symbionts in natural field populations, as well as to detect contaminations in laboratory rearings. This method may easily be extended to other species.


Tetranychidae Wolbachia Cardinium Rickettsia Species identification Multiplex diagnosis tool 



We are grateful to Olivier Duron for useful discussions and comments, and to Inês Santos for taking care of plants and mite populations. This work was funded by an FCT-ANR project (FCT-ANR//BIA-EVF/0013/2012) to SM and Isabelle Olivieri, and by an FCT-Tubitak project (FCT-TUBITAK/0001/2014) to SM and Ibrahim Cakmak. FZ was funded through an FCT Post-Doc fellowship (SFRH/BPD/125020/2016). Funding agencies did not participate in the design or analysis of experiments. We declare that we do not have any conflict of interest.

Supplementary material

10493_2018_224_MOESM1_ESM.pdf (97 kb)
Supplementary material 1 (PDF 97 kb)


  1. Arimoto M, Satoh M, Uesugi R, Osakabe M (2013) PCR-RFLP analysis for identification of Tetranychus spider mite species (Acari: Tetranychidae). J Econ Entomol 106:661–668. CrossRefPubMedGoogle Scholar
  2. Ballard JWO, Melvin RG (2007) Tetracycline treatment influences mitochondrial metabolism and mtDNA density two generations after treatment in Drosophila. Insect Mol Biol 16:799–802CrossRefPubMedGoogle Scholar
  3. Ben-David T, Melamed S, Gerson U, Morin S (2007) ITS2 sequences as barcodes for identifying and analyzing spider mites (Acari: Tetranychidae). Exp Appl Acarol 41:169–181. CrossRefPubMedGoogle Scholar
  4. Breeuwer JAJ (1997) Wolbachia and cytoplasmic incompatibility in the spider mites Tetranychus urticae and T. turkestani. Heredity 79:41–47. CrossRefGoogle Scholar
  5. Chen XL, Xie RR, Li GQ, Hong XY (2009) Simultaneous detection of endosymbionts Wolbachia and Cardinium in spider mites (Acari: Tetranychidae) by multiplex-PCR. Int J Acarol 35:397–403. CrossRefGoogle Scholar
  6. Clemente SH, Rodrigues LR, Ponce R, Varela SAM, Magalhães S (2016) Incomplete species recognition entails few costs in spider mites, despite first-male precedence. Behav Ecol Sociobiol 70:1161–1170. CrossRefGoogle Scholar
  7. de Mendonça RS, Navia D, Diniz IR, Auger P, Navajas M (2011) A critical review on some closely related species of Tetranychus sensu stricto (Acari: Tetranychidae) in the public DNA sequences databases. Exp Appl Acarol 55:1–23. CrossRefPubMedGoogle Scholar
  8. Duron O, Bouchon D, Boutin S, Bellamy L, Zhou LQ, Engelstadter J, Hurst GD (2008) The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol 6:27. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Engelstadter J, Hurst GDD (2009) The ecology and evolution of microbes that manipulate host reproduction. Ann Rev Ecol Evol Syst 40:127–149. CrossRefGoogle Scholar
  10. Ferragut F, Garzon-Luque E, Pekas A (2013) The invasive spider mite Tetranychus evansi (Acari: Tetranychidae) alters community composition and host-plant use of native relatives. Exp Appl Acarol 60:321–341. CrossRefPubMedGoogle Scholar
  11. Gomez-Diaz E, Doherty PF, Duneau D, McCoy KD (2010) Cryptic vector divergence masks vector-specific patterns of infection: an example from the marine cycle of Lyme borreliosis. Evol Appl 3:391–401. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gotoh T, Noda H, Hong XY (2003) Wolbachia distribution and cytoplasmic incompatibility based on a survey of 42 spider mite species (Acari: Tetranychidae) in Japan. Heredity 91:208–216. CrossRefPubMedGoogle Scholar
  13. Gotoh T, Noda H, Ito S (2007a) Cardinium symbionts cause cytoplasmic incompatibility in spider mites. Heredity 98:13–20. CrossRefPubMedGoogle Scholar
  14. Gotoh T, Sugasawa J, Noda H, Kitashima Y (2007b) Wolbachia-induced cytoplasmic incompatibility in Japanese populations of Tetranychus urticae (Acari: Tetranychidae). Exp Appl Acarol 42:1–16. CrossRefPubMedGoogle Scholar
  15. Henegariu O, Heerema NA, Dlouhy SR, Vance GH, Vogt PH (1997) Multiplex PCR: critical parameters and step-by-step protocol. Biotechniques 23:504–511PubMedGoogle Scholar
  16. Hosseini R, Keller MA, Schmidt O, Framenau VW (2007) Molecular identification of wolf spiders (Araneae: Lycosidae) by multiplex polymerase chain reaction. Biol Control 40:128–135. CrossRefGoogle Scholar
  17. Hoy MA, Jeyaprakash A (2005) Microbial diversity in the predatory mite Metaseiulus occidentalis (Acari: Phytoseiidae) and its prey, Tetranychus urticae (Acari: Tetranychidae). Biol Control 32:427–441. CrossRefGoogle Scholar
  18. Hurtado MA, Ansaloni T, Cros-Arteil S, Jacas JA, Navajas M (2008) Sequence analysis of the ribosomal internal transcribed spacers region in spider mites (Prostigmata: Tetranychidae) occurring in citrus orchards in Eastern Spain: use for species discrimination. Ann Appl Biol 153:167–174. Google Scholar
  19. Kurata A, Fujiwara A, Haruyama N, Tsuchida T (2016) Multiplex PCR method for rapid identification of genetic group and symbiont infection status in Bemisia tabaci (Hemiptera: Aleyrodidae). Appl Entomol Zool 51:167–172. CrossRefGoogle Scholar
  20. Lachish S, Gopalaswamy AM, Knowles SCL, Sheldon BC (2012) Site-occupancy modelling as a novel framework for assessing test sensitivity and estimating wildlife disease prevalence from imperfect diagnostic tests. Methods Ecol Evol 3:339–348. CrossRefGoogle Scholar
  21. Li DM, Fan QH, Waite DW, Gunawardana D, George S, Kumarasinghe L (2015) Development and validation of a real-time PCR assay for rapid detection of two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). PLoS ONE 10:e0131887. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Liu Y, Miao H, Hong XY (2006) Distribution of the endosymbiotic bacterium Cardinium in Chinese populations of the carmine spider mite Tetranychus cinnabarinus (Acari: Tetranychidae). J Appl Entomol 130:523–529. CrossRefGoogle Scholar
  23. Ma WJ, Vavre F, Beukeboom LW (2014) Manipulation of arthropod sex determination by endosymbionts: diversity and molecular mechanisms. Sex Dev 8:59–73. CrossRefPubMedGoogle Scholar
  24. Markoulatos P, Siafakas N, Moncany M (2002) Multiplex polymerase chain reaction: a practical approach. J Clin Lab Anal 16:47–51. CrossRefPubMedGoogle Scholar
  25. Matsuda T, Fukumoto C, Hinomoto N, Gotoh T (2013) DNA-based identification of spider mites: molecular evidence for cryptic species of the genus Tetranychus (Acari: Tetranychidae). J Econ Entomol 106:463–472. CrossRefPubMedGoogle Scholar
  26. Miari VF, Wall GR, Clark DA (2015) Evaluation of non-extracted genital swabs for real-time HSV PCR. J Med Virol 87:125–129. CrossRefPubMedGoogle Scholar
  27. Migeon A, Dorkeld F (2006–2017) Spider Mites Web: a comprehensive database for the Tetranychidae.
  28. Milesi P, Weill M, Lenormand T, Labbe P (2017) Heterogeneous gene duplications can be adaptive because they permanently associate overdominant alleles. Evol Lett 1:169–180. CrossRefGoogle Scholar
  29. Monzó C, Sabater-Munoz B, Urbaneja A, Castanera P (2010) Tracking medfly predation by the wolf spider, Pardosa cribata Simon, in citrus orchards using PCR-based gut-content analysis. Bull Entomol Res 100:145–152. CrossRefPubMedGoogle Scholar
  30. Navajas M, Lagnel J, Fauvel G, De Moraes G (1999) Sequence variation of ribosomal internal transcribed spacers (ITS) in commercially important phytoseiidae mites. Exp Appl Acarol 23:851–859. CrossRefPubMedGoogle Scholar
  31. Orsucci M, Navajas M, Fellous S (2017) Genotype-specific interactions between parasitic arthropods. Heredity 118:260–265. CrossRefPubMedGoogle Scholar
  32. O’Shea KL, Singh ND (2015) Tetracycline-exposed Drosophila melanogaster males produce fewer offspring but a relative excess of sons. Ecol Evol 5:3130–3139. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Pandori MW, Lei J, Wong EH, Klausner J, Liska S (2006) Real-time PCR for detection of herpes simplex virus without nucleic acid extraction. BMC Infect Dis 6:104. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Perez-Sayas C, Pina T, Gomez-Martinez MA, Camanes G, Ibanez-Gual MV, Jaques JA, Hurtado MA (2015) Disentangling mite predator-prey relationships by multiplex PCR. Mol Ecol Res 15:1330–1345. CrossRefGoogle Scholar
  35. Perrot-Minnot MJ, Cheval B, Migeon A, Navajas M (2002) Contrasting effects of Wolbachia on cytoplasmic incompatibility and fecundity in the haplodiploid mite Tetranychus urticae. J Evol Biol 15:808–817. CrossRefGoogle Scholar
  36. Ros VID, Breeuwer JAJ (2009) The effects of, and interactions between, Cardinium and Wolbachia in the doubly infected spider mite Bryobia sarothamni. Heredity 102:413–422. CrossRefPubMedGoogle Scholar
  37. Ros VID, Fleming VM, Feil EJ, Breeuwer JAJ (2012) Diversity and recombination in Wolbachia and Cardinium from Bryobia spider mites. BMC Microbiol 12:S13. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Sarmento RA, Lemos F, Dias CR, Kikuchi WT, Rodrigues JCP, Pallini A, Sabelis MW, Janssen A (2011) A herbivorous mite down-regulates plant defence and produces web to exclude competitors. PLoS ONE 6:e23757. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sato Y, Alba JM, Sabelis MW (2014) Testing for reproductive interference in the population dynamics of two congeneric species of herbivorous mites. Heredity 113:495–502. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Shim JK, Khaing TM, Seo HE, Ahn JY, Jung DO, Lee JH, Lee KY (2016) Development of species-specific primers for rapid diagnosis of Tetranychus urticae, T. kanzawai, T. phaselus and T. truncatus (Acari: Tetranychidae). Entomol Res 46:162–169. CrossRefGoogle Scholar
  41. Simões PM, Mialdea G, Reiss D, Sagot MF, Charlat S (2011) Wolbachia detection: an assessment of standard PCR Protocols. Mol Ecol Res 11:567–572. CrossRefGoogle Scholar
  42. Sint D, Raso L, Traugott M (2012) Advances in multiplex PCR: balancing primer efficiencies and improving detection success. Methods Ecol Evol 3:898–905. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Skoracka A, Magalhães S, Rector BG, Kuczynski L (2015) Cryptic speciation in the Acari: A function of species lifestyles or our ability to separate species? Exp Appl Acarol 67:165–182. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Staudacher K, Pitterl P, Furlan L, Cate PC, Traugott M (2011) PCR-based species identification of Agriotes larvae. Bull Entomol Res 101:201–210. CrossRefPubMedGoogle Scholar
  45. Staudacher H, Schimmel BCJ, Lamers MM, Wybouw N, Groot AT, Kant MR (2017) Independent effects of a herbivore’s bacterial symbionts on its performance and induced plant defences. Int J Mol Sci 18:182. CrossRefPubMedCentralGoogle Scholar
  46. Suh E, Sim C, Park J-J, Cho K (2015) Inter-population variation for Wolbachia induced reproductive incompatibility in the haplodiploid mite Tetranychus urticae. Exp Appl Acarol 65:55–71. CrossRefPubMedGoogle Scholar
  47. Vala F, Breeuwer JAJ, Sabelis MW (2000) Wolbachia-induced ‘hybrid breakdown’ in the two-spotted spider mite Tetranychus urticae Koch. Proc R Soc B Biol Sci 267:1931–1937CrossRefGoogle Scholar
  48. Vala F, Weeks A, Claessen D, Breeuwer JAJ, Sabelis MW (2002) Within- and between-population variation for Wolbachia-induced reproductive incompatibility in a haplodiploid mite. Evolution 56:1331–1339CrossRefPubMedGoogle Scholar
  49. Weeks AR, Breeuwer JAJ (2001) Wolbachia-induced parthenogenesis in a genus of phytophagous mites. Proc R Soc Lond B Bio 268:2245–2251. CrossRefGoogle Scholar
  50. Weeks AR, Marec F, Breeuwer JAJ (2001) A mite species that consists entirely of haploid females. Science 292:2479–2482. CrossRefPubMedGoogle Scholar
  51. Weinert LA, Araujo-Jnr EV, Ahmed MZ, Welch JJ (2015) The incidence of bacterial endosymbionts in terrestrial arthropods. Proc R Soc Lond 282:20150249. CrossRefGoogle Scholar
  52. Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751. CrossRefPubMedGoogle Scholar
  53. Xi ZY, Khoo CCH, Dobson SL (2005) Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 310:326–328. CrossRefPubMedGoogle Scholar
  54. Xie RR, Chen XL, Hong XY (2011) Variable fitness and reproductive effects of Wolbachia infection in populations of the two-spotted spider mite Tetranychus urticae Koch in China. Appl Entomol Zool 46:95–102. CrossRefGoogle Scholar
  55. Xie RR, Sun JT, Xue XF, Hong XY (2016) Cytoplasmic incompatibility and fitness benefits in the two-spotted spider mite Tetranychus urticae (red form) doubly infected with Wolbachia and Cardinium. Syst Appl Acarol 21:1161–1173. CrossRefGoogle Scholar
  56. Yu MZ, Zhang KJ, Xue XF, Hong XY (2011) Effects of Wolbachia on mtDNA variation and evolution in natural populations of Tetranychus urticae Koch. Insect Mol Biol 20:311–321. CrossRefPubMedGoogle Scholar
  57. Zeh JA, Bonilla MM, Adrian AJ, Mesfin S, Zeh DW (2012) From father to son: transgenerational effect of tetracycline on sperm viability. Sci Rep 2:375. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Zélé F, Vézilier J, L’Ambert G, Nicot A, Gandon S, Rivero A, Duron O (2014) Dynamics of prevalence and diversity of avian malaria infections in wild Culex pipiens mosquitoes: the effects of Wolbachia, filarial nematodes and insecticide resistance. Parasite Vector 7:437. CrossRefGoogle Scholar
  59. Zélé F, Santos I, Olivieri I, Weill M, Duron O, Magalhães S (2018) Endosymbiont diversity and prevalence in herbivorous spider mite populations in South-Western Europe. FEMS Microbiol Ecol. (in press) PubMedGoogle Scholar
  60. Zhang YK, Chen YT, Yang K, Qiao GX, Hong XY (2016) Screening of spider mites (Acari: Tetranychidae) for reproductive endosymbionts reveals links between co-infection and evolutionary history. Sci Rep 6:27900. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Zhao DX, Chen DS, Ge C, Gotoh T, Hong XY (2013a) Multiple Infections with Cardinium and two strains of Wolbachia in the spider mite Tetranychus phaselus Ehara: Revealing new forces driving the spread of Wolbachia. PLoS ONE 8:e54964. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Zhao DX, Zhang XF, Hong XY (2013b) Host-symbiont interactions in spider mite Tetranychus truncates doubly infected with Wolbachia and Cardinium. Environ Entomol 42:445–452. CrossRefPubMedGoogle Scholar
  63. Zhu LY, Zhang KJ, Zhang YK, Ge C, Gotoh T, Hong XY (2012) Wolbachia strengthens Cardinium-induced cytoplasmic incompatibility in the spider mite Tetranychus piercei McGregor. Curr Microbiol 65:516–523. CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Ecology, Evolution and Environmental Changes (cE3c)Faculdade de Ciências da Universidade de LisboaLisbonPortugal
  2. 2.Institut des Sciences de l’EvolutionCNRS-Université de Montpellier-IRD-EPHEMontpellier, Cedex 5France

Personalised recommendations