Advertisement

Experimental and Applied Acarology

, Volume 73, Issue 2, pp 159–176 | Cite as

Comparative transcriptomes and reciprocal best hit analysis revealed potential pigment genes in two color forms of Tetranychus urticae

  • Yi-Dan Mo
  • Si-Xia Yang
  • Jing-Yu Zhao
  • Peng-Yu Jin
  • Xiao-Yue Hong
Article

Abstract

Tetranychus urticae Koch is a worldwide agricultural pest. There are two color forms: red and green. The molecular mechanism underlying this color variation is unknown. To elucidate the mechanism, we characterized differentially expressed pigment pathway genes shared in the transcriptomes of these two forms using RNA sequencing and reciprocal best hit analysis. Differentially expressed pigment pathway genes were determined by qRT-PCR to confirm the accuracy of RNA-Seq. The transcriptomes revealed 963 differentially expressed genes (DEGs), of which 687 DEGs were higher in the green form. KEGG enrichment analysis revealed carotenoid biosynthesis genes in T. urticae. Reciprocal best hit analysis revealed 817 putative pigment pathway genes, 38 of which were differentially expressed and mainly classified into four categories: heme, melanin, ommochrome and rhodopsin. Phylogenetic analysis of homologous ommochrome genes showed that tetur09g01950 is closely related to Ok. This study revealed putative pigment pathway genes in the two forms of T. urticae, and might provide a new resource for understanding the mechanism of color variation.

Keywords

Transcriptomes Pigment Coloration variation Tetranychus urticae 

Notes

Acknowledgements

We thank Professor Tetsuo Gotoh of Ibaraki University, Japan for providing spider mite samples, and Wei Deng, Xue Xia and Lei Chen of Nanjing Agricultural University, China for collecting spider mite samples. This work was supported by a Grant-in-aid from the National Natural Science Foundation of China (31672035, 31371944), and a Grant-in-aid (No. 2016YFC1201200) from the National Key Research and Development Project of China.

Supplementary material

10493_2017_188_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 15 kb)

References

  1. Auger P, Migeon A, Ueckermann AE, Tiedt L, Navajas M (2013) Evidence for synonymy between Tetranychus urticae and Tetranychus cinnabarinus (Acari, Prostigmata, Tetranychidae): review and new data. Acarologia 53(4):383–415CrossRefGoogle Scholar
  2. Boudreaux H (1956) Revision of the two-spotted spider mite (Acarina, Tetranychidae) complex, Tetranychus telarius (Linnaeus). Ann Entomol Soc Am 49:43–48CrossRefGoogle Scholar
  3. Brandenburg RL, Kennedy GG (1981) Differences in dorsal integumentary lobe densities between Tetranychus urticae Koch and Tetranychus cinnabarinus (Boisduval) (Acarina: Tetranychidae) from northeastern North Carolina. Int J Acarol 7:231–234CrossRefGoogle Scholar
  4. Breeuwer JAJ (1997) Wolbachia and cytoplasmic incompatibility in the spider mites Tetranychus urticae and T. turkestani. Heredity 79:41–47CrossRefGoogle Scholar
  5. Bryon A, Wybouw N, Dermauw W, Tirry L, Van Leeuwen T (2013) Genome wide gene-expression analysis of facultative reproductive diapause in the two-spotted spider mite Tetranychus urticae. BMC Genom 14:815CrossRefGoogle Scholar
  6. Bryon A, Kurlovs AH, Dermauw W et al (2017) Disruption of a horizontally transferred phytoene desaturase abolishes carotenoid accumulation and diapause in Tetranychus urticae. Proc Natl Acad Sci 114(6):201706865Google Scholar
  7. Carroll S (2008) Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:25–36CrossRefPubMedGoogle Scholar
  8. Croucher PJP, Brewer MS, Winchell CJ, Oxford GS, Gillespie RG (2013) De novo characterization of the gene-rich transcriptomes of two color-polymorphic spiders, Theridion grallator and T. californicum (Araneae: Theridiidae), with special reference to pigment genes. BMC Genom 14:862CrossRefGoogle Scholar
  9. De Gregorio GE, Han SJ, Lee WJ, Baek MJ, Osaki T, Kawabata S, Lee BL, Iwanaga S, Lemaitre B, Brey PT (2002) An immune-responsive serpin regulates the melanization cascade in Drosophila. Dev Cell 3:581CrossRefPubMedGoogle Scholar
  10. Dermauw W, Osborne EJ, Clark RM, Grbić M, Tirry L, Van Leeuwen T (2013) A burst of ABC genes in the genome of the polyphagous spider mite Tetranychus urticae. BMC Genom 14:317CrossRefGoogle Scholar
  11. Dupont LM (1979) On gene flow between Tetranychus urticae Koch, 1836 and Tetranychus cinnabarinus (Boisduval) Boudreaux, 1956 (Acari: Tetranychidae): synonomy between the two species. Entomol Exp Appl 25:297–303CrossRefGoogle Scholar
  12. Fukuda Y, Schuetz JD (2012) ABC transporters and their role in nucleoside and nucleotide drug resistance. Biochem Pharmacol 83:1073–1083CrossRefPubMedPubMedCentralGoogle Scholar
  13. Futahashi R, Fujiwara H (2005) Melanin-synthesis enzymes coregulate stage-specific larval cuticular markings in the swallowtail butterfly, Papilio xuthus. Dev Genes Evol 215:519–529CrossRefPubMedGoogle Scholar
  14. Giordano E, Peluso I, Rendina R, Digilio A, Furia M (2003) The clot gene of Drosophila melanogaster encodes a conserved member of the thioredoxin-like protein superfamily. Mol Genet Genom 268:692Google Scholar
  15. Gotoh T, Tokioka T (1996) Genetic compatibility among diapausing red, non-diapausing red and diapausing green forms of the two-spotted spider mite, Tetranychus urticae koch (Acari: Tetranychidae). Jpn J Entomol 64:215–225Google Scholar
  16. Gotoh T, Sugasawa J, Nagata T (1999) Reproductive compatibility of the two-spotted spider mite (Tetranychus urticae) infected with Wolbachia. Entomol Sci 2:289–295Google Scholar
  17. Grbic M, Khila A, Lee K, Bjelica A, Grbic V, Whistlecraft J, Verdon L, Navajas M, Nagy LM (2007) Mity model: Tetranychus urticae, a candidate for chelicerate model organism. BioEssays 29:489–496CrossRefPubMedGoogle Scholar
  18. Grbic M, Van Leeuwen T, Clark RM, Rombauts S, Rouze P, Grbic V, Osborne EJ, Dermauw W, Ngoc PCT, Ortego F et al (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 479:487–492CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gu G, Yang J, Mitchell KA, Otousa JE (2004) Drosophila ninaB and ninaD act outside of retina to produce rhodopsin chromophore. J Biol Chem 279:18608–18613CrossRefPubMedGoogle Scholar
  20. Gunnar B, Tobias K, Marcé L, Hans M (2013) Functional analysis of the ATP-binding cassette (ABC) transporter gene family of Tribolium castaneum. BMC Genom 14:6CrossRefGoogle Scholar
  21. Han Q, Fang J, Ding H, Johnson J, Christensen BM, Li J (2002) Identification of Drosophila melanogaster yellow-f and yellow-f 2 proteins as dopachrome-conversion enzymes. Biochem J 368:333–340CrossRefPubMedPubMedCentralGoogle Scholar
  22. Harris DA, Kim K, Nakahara KS, Vasquez-Doorman C, Carthew RW (2011) Cargo sorting to lysosome-related organelles regulates sirna-mediated gene silencing. J Cell Biol 194:77–87CrossRefPubMedPubMedCentralGoogle Scholar
  23. Henning F, Jones JC, Franchini P, Meyer A (2013) Transcriptomics of morphological color change in polychromatic Midas cichlids. BMC Genom 14:171CrossRefGoogle Scholar
  24. Hines HM, Papa R, Ruiz M, Papanicolaou A, Wang C, Nijhout HF et al (2012) Transcriptome analysis reveals novel patterning and pigmentation genes underlying Heliconius butterfly wing pattern variation. BMC Genom 13:288CrossRefGoogle Scholar
  25. Howells AJ, Summers KM, Ryall RL (1977) Developmental patterns of 3-hydroxykynurenine accumulation in white and various other eye color mutants of Drosophila melanogaster. Biochem Genet 15:1049–1059CrossRefPubMedGoogle Scholar
  26. Jeong S, Rebeiz M, Andolfatto P, Werner T, True J (2008) The evolution of gene regulation underlies a morphological difference between two Drosophila sister species. Cell 132:783–793CrossRefPubMedGoogle Scholar
  27. Jordan IK, Kota KC, Cui G, Thompson CH, Mccarty NA (2008) Evolutionary and functional divergence between the cystic fibrosis transmembrane conductance regulator and related ATP-binding cassette transporters. Proc Natl Acad Sci USA 105:18865–18870CrossRefPubMedGoogle Scholar
  28. Khan SA, Reichelt M, Heckel DG (2017) Functional analysis of the ABCs of eye color in Helicoverpa armigera with CRISPR/Cas9-induced mutations. Sci Rep 7:40025CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kikuchi G, Yoshida T, Noguchi M (2005) Heme oxygenase and heme degradation. Biochem Biophys Res Commun 338:558–567CrossRefPubMedGoogle Scholar
  30. Koch PB, Keys DN, Rocheleau TA, Aronstein K, Blackburn M, Carroll SB, Ffrench Constant RH (1998) Regulation of dopa decarboxylase expression during colour pattern formation in wild-type and melanic tiger swallowtail butterflies. Development 125:2303–2313PubMedGoogle Scholar
  31. Kruh GD, Belinsky MG (2003) The MRP family of drug efflux pumps. Oncogene 22:7537–7552CrossRefPubMedGoogle Scholar
  32. Kuang HS, Cheng LS (1990) Studies on the differentiation of two sibling species, Tetranychus cinnabarinus (Boisduval) and T. urticae Koch. Acta Entomol Sin 33:109–116Google Scholar
  33. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  34. Mackenzie SM, Brooker MR, Gill T, Cox GB, Howells AJ, Ewart G (1999) Mutations in the white gene of Drosophila melanogaster affecting ABC transporters that determine eye colouration. Biochim Biophys Acta 1419:173–185CrossRefPubMedGoogle Scholar
  35. Migeon A, Dorkeld F (2006–2017) Spider Mites Web: a comprehensive database for the Tetranychidae. http://www.montpellier.inra.fr/CBGP/spmweb
  36. Moran NA, Jarvik T (2010) Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 328:624–627CrossRefPubMedGoogle Scholar
  37. Navajas M, Fournier D, Lagnel J, Gutlerrez J, Boursot P (1996) Mitochondrial COI sequences in mites: evidence for variations in base composition. Insect Mol Biol 5:281–285CrossRefPubMedGoogle Scholar
  38. Navajas M, Lagnel J, Gutierrez J, Boursot P (1998) Species-wide homogeneity of nuclear ribosomal ITS2 sequences in the spider mite Tetranychus urticae contrasts with extensive mitochondrial COI polymorphism. Heredity 80:742–752CrossRefPubMedGoogle Scholar
  39. Navajas M, Perrot-Minnot M, Lagnel J, Migeon A, Bourse T, Cornuet JM (2002) Genetic structure of a greenhouse population of the spider mite Tetranychus urticae: spatio-temporal analysis with microsatellite markers. Insect Mol Biol 11:157–165CrossRefPubMedGoogle Scholar
  40. Osakabe M, Sakagami Y (2007) RFLP analysis of ribosomal DNA in sibling species of spider mite, genus Panonychus (Acari: Tetranychidae). Insect Mol Biol 3(1):63–66CrossRefGoogle Scholar
  41. Passos DT, Ferreira CAS, Da Silva SS, Richter MF, Ozaki LS (1999) Detection of genomic variability in different populations of the cattle tick Boophilus microplus in southern Brazil. Vet Parasitol 87(1):83–92CrossRefPubMedGoogle Scholar
  42. Peelman F, Labeur C, Vanloo B, Roosbeek S, Devaud C, Duverger N, Denefle P, Rosier M, Vandekerckhove J, Rosseneu M (2003) Characterization of the ABCA transporter subfamily: identification of prokaryotic and eukaryotic members, phylogeny and topology. J Mol Biol 325:259–274CrossRefPubMedGoogle Scholar
  43. Platt JL, Nath KA (1998) Heme oxygenase: protective gene or Trojan horse. Nat Med 4:1364–1365CrossRefPubMedGoogle Scholar
  44. Przibram H, Lederer E (1933) The tiergrun the locusts as a mixture of dyes. Anz Akad Wiss Wien 70:163–165 [in German]Google Scholar
  45. Reed RD, Nagy LM (2005) Evolutionary redeployment of a biosynthetic module: expression of eye pigment genes vermilion, cinnabar, and white in butterfly wing development. Evol Dev 7:301–311CrossRefPubMedGoogle Scholar
  46. Ros VID, Breeuwer JAJ (2007) Spider mite (Acari: Tetranychidae) mitochondrial COI phylogeny reviewed: host plant relationships, phylogeography, reproductive parasites and barcoding. Exp Appl Acarol 42(4):239–262CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ruiz-Vázquez P, Silva FJ (1999) Aberrant splicing of the Drosophila melanogaster phenylalanine hydroxylase pre-mRNA caused by the insertion of a B104/roo transposable element in the henna locus. Insect Biochem Mol Biol 29:311–318CrossRefPubMedGoogle Scholar
  48. Sarfare S, Ahmad ST, Joyce MV, Boggess B, Otousa JE (2005) The Drosophila nina G oxidoreductase acts in visual pigment chromophore production. J Biol Chem 280:11895–11901CrossRefPubMedGoogle Scholar
  49. Sullivan DT, Bell L, Paton DR, Sullivan MC (1979) Purine transport by malpighian tubules of pteridine-deficient eye color mutants of Drosophila melanogaster. Biochem Genet 17:565–573CrossRefPubMedGoogle Scholar
  50. Sun JT, Lian C, Navajas M et al (2012) Microsatellites reveal a strong subdivision of genetic structure in Chinese populations of the mite Tetranychus urticae Koch (Acari: Tetranychidae). BMC Genet 13(1):8CrossRefPubMedPubMedCentralGoogle Scholar
  51. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) Mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  52. Trapnell C, Roberts A, Goff LA, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-Seq experiments with tophat and cufflinks. Nat Protoc 7:562–578CrossRefPubMedPubMedCentralGoogle Scholar
  53. Veerman A (1980) Functional involvement of carotenoids in photoperiodic induction of diapause in the spider mite, Tetranychus urticae. Physiol Entomol 5:291–300CrossRefGoogle Scholar
  54. Walter MF, Black BC, Afshar G, Kermabon AY, Wright TRF, Biessmann H (1991) Temporal and spatial expression of the yellow gene in correlation with cuticle formation and dopa decarboxylase activity in Drosophila development. Dev Biol 147:32–45CrossRefPubMedGoogle Scholar
  55. Wang T, Jiao Y, Montell C (2007) Dissection of the pathway required for generation of vitamin and for Drosophila phototransduction. J Cell Biol 177:305–316CrossRefPubMedPubMedCentralGoogle Scholar
  56. Wang L, Kiuchi T, Fujii T, Daimon T, Li M, Banno Y, Kikuta S, Kikawada T, Katsuma S, Shimada T (2013) Mutation of a novel ABC transporter gene is responsible for the failure to incorporate uric acid in the epidermis of Ok mutants of the silkworm, Bombyx mori. Insect Biochem Mol Biol 43:562–571CrossRefPubMedGoogle Scholar
  57. Ward PS, Boussy IA, Swincer DE (1982) Electrophoretic detection of enzyme polymorphism and differentiation in three species of spider mites (Tetranychus) (Acari: Tetranychidae). Ann Entomol Soc Am 75:595–598CrossRefGoogle Scholar
  58. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, BerlinCrossRefGoogle Scholar
  59. Wittkopp PJ, Beldade P (2009) Development and evolution of insect pigmentation: genetic mechanisms and the potential consequences of pleiotropy. Semin Cell Dev Biol 20:65–71CrossRefPubMedGoogle Scholar
  60. Wittkopp PJ, True JR, Carroll SB (2002a) Reciprocal functions of the Drosophila yellow and ebony proteins in the development and evolution of pigment patterns. Development 129:1849PubMedGoogle Scholar
  61. Wittkopp PJ, Vaccaro K, Carroll SB (2002b) Evolution of yellow gene regulation and pigmentation in Drosophila. Curr Biol 12:1547–1556CrossRefPubMedGoogle Scholar
  62. Wittkopp PJ, Carroll SB, Kopp A (2003) Evolution in black and white: genetic control of pigment patterns in Drosophila. Trends Genet 19:495CrossRefPubMedGoogle Scholar
  63. Wright TR (1987) The genetics of biogenic amine metabolism, sclerotization, and melanization in Drosophila melanogaster. Adv Genet 24:127–222PubMedGoogle Scholar
  64. Xiong Y, Zhang Q, Xu J, Duan C, Zhou M (2002) Genetic regulation of body color in larvae of Galleria mellonella. Acta Entomol Sin 45:717–723Google Scholar
  65. Yamaoka T, Itakura M (1996) metabolism of purine nucleotides and the production of uric acid. Nihon Rinsho Jpn J Clin Med 54:3188–3194Google Scholar
  66. Ziegler I, Mcdonald T, Hesslinger C, Pelletier I, Boyle P, Mcdonaldo T (2000) Development of the pteridine pathway in the zebrafish, Danio rerio. J Biol Chem 275:18926–18932CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Yi-Dan Mo
    • 1
  • Si-Xia Yang
    • 2
  • Jing-Yu Zhao
    • 1
  • Peng-Yu Jin
    • 1
  • Xiao-Yue Hong
    • 1
  1. 1.Department of EntomologyNanjing Agricultural UniversityNanjingChina
  2. 2.School of Energy and Environment ScienceYunnan Normal UniversityKunmingChina

Personalised recommendations