Abstract
In this work, we compare morphological and molecular data in their ability to distinguish between species of water mites (Acari, Prostigmata, Hydrachnidia). We have focused on the two species of the genus Lebertia inhabiting the island of Madeira. While traditional morphological traits were initially sufficient to distinguish between these two species, the molecular data were more dependable on the kind of analysis carried out. Single arbitrary genetic distance (e.g. a K2P distance below 2%) may lead to the conclusion that the specimens under study belong to the same species. Analysing the same specimens with the coalescent model has proved the evolutionary independence of both Lebertia clades in Madeira. Furthermore, multi-rate Poisson Tree Process analysis confirmed both lineages as independent species. Our results agree with previous studies warning of the dangers of rigid species delimitation based on arbitrary molecular distances. In addition, the importance of different molecular data approaches for correct species delimitation in water mites is highlighted.


Similar content being viewed by others
References
Blaxter M (2003) Molecular systematics: counting angels with DNA. Nature 421:122–124. doi:10.1038/421122a
Bouckaert R et al (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537–e1003537. doi:10.1371/journal.pcbi.1003537
Brehm A, Jesus J, Spinola H, Alves C, Vicente L, Harris DJ (2003) Phylogeography of the Madeiran endemic lizard Lacerta dugesii inferred from mtDNA sequences. Mol Phylogenet Evol 26:222–230. doi:10.1016/S1055-7903(02)00310-X
Brower AVZ (2006) Problems with DNA barcodes for species delimitation: ‘Ten species’ of Astraptes fulgerator reassessed (Lepidoptera: Hesperiidae). Syst Biodivers 4:127–132. doi:10.1017/S147720000500191X
Cook D (1974) Water mite genera and subgenera. American Entomological Institute, Ann Arbor
Darwin C (1859) On the origin of Species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London, UK (revised version, 1985, Penguin Classics, UK, 477 p)
Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi:10.1093/nar/gkh340
Emerson BC (2002) Evolution on oceanic islands: molecular phylogenetic approaches to understanding pattern and process. Mol Ecol 11:951–966. doi:10.1046/j.1365-294X.2002.01507.x
Ernsting BR, Edwards DD, Aldred KJ, Fites JS, Neff CR (2009) Mitochondrial genome sequence of Unionicola foili (Acari: Unionicolidae): a unique gene order with implications for phylogenetic inference. Exp Appl Acarol 49:305–316. doi:10.1007/s10493-009-9263-1
Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063. doi:10.1126/science.1070710
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299
Fujita MK, Leaché AD, Burbrink FT, McGuire JA, Moritz C (2012) Coalescent-based species delimitation in an integrative taxonomy. Trends Ecol Evol 27:480–488. doi:10.1016/j.tree.2012.04.012
Geldmacher J, van den Bogaard P, Hoernle K, Schmincke H-U (2000) The 40 Ar/39 Ar age dating of the Madeira Archipelago and hotspot track (eastern North Atlantic). Geochem Geophys Geosyst. doi:10.1029/1999GC000018
Gerecke R (2007) Süßwasserfauna von Mitteleuropa, vol. 7/2-1 Chelicerata: Araneae/Acari I. 2006 edn. Springer Spektrum
Gerecke R (2009) Revisional studies on the European species of the water mite genus Lebertia Neuman, 1880 (Acari: Hydrachnidia: Lebertiidae). Abhandlungen der Senckenbergisch en Naturforschenden Gesellschaft 566:1–144
Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA barcodes. Proc Biol Sci R Soc 270:313–321. doi:10.1098/rspb.2002.2218
Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. PLoS Biol 2:e312–e312. doi:10.1371/journal.pbio.0020312
Helaers R, Milinkovitch MC (2010) MetaPIGA v2.0: maximum likelihood large phylogeny estimation using the metapopulation genetic algorithm and other stochastic heuristics. BMC Bioinform 11:379. doi:10.1186/1471-2105-11-379
Hickerson M, Meyer C, Moritz C (2006) DNA barcoding will often fail to discover new animal species over broad parameter space. Syst Biol 55:729–739. doi:10.1080/10635150600969898
Horreo JL (2012) ‘Representative Genes’, is it OK to use a small amount of data to obtain a phylogeny that is at least close to the true tree? J Evol Biol 25:2661–2664. doi:10.1111/j.1420-9101.2012.02622.x
Kapli P, Lutteropp S, Zhang J, Kobert K, Pavlidis P, Stamatakis A, Flouri T (2017) Multi-rate Poisson Tree Processes for single-locus species delimitation under Maximum Likelihood and Markov Chain Monte Carlo. Bioinformatics. doi:10.1093/bioinformatics/btx025
Kekkonen M, Mutanen M, Kaila L, Nieminen M, Hebert PDN (2015) Delineating species with DNA barcodes: a case of taxon dependent method performance in moths. PLOS ONE 10:e0122481–e0122481. doi:10.1371/journal.pone.0122481
Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mo Evol 16:111–120
Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. doi:10.1093/molbev/msw054
Larson JL (1971) Reason and experience; the representation of natural order in the work of Carl von Linné. University of California Press, Berkeley
Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30:3276–3278. doi:10.1093/bioinformatics/btu531
Leonelli S (2015) What counts as scientific data? A relational framework. Philos Sci 82:810–821. doi:10.1086/684083
Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics (Oxford, England) 25:1451–1452. doi:10.1093/bioinformatics/btp187
Lim GS, Balke M, Meier R (2012) Determining species boundaries in a world full of rarity: singletons species delimitation methods. Syst Biol 61:165–169. doi:10.1093/sysbio/syr030
Lundblad O (1943) Die Arthropodenfauna von Madeira nach den Ergebnissen der Reise von Prof. Dr. O. Lundblad Juli-August 1935. XXXI. Hydrachnellae. Arkiv för Zoologi 34: 1–122., Stockholm
MacArthur RH, Wilson EO (1963) An equilibrium theory of insular zoogeography. Evolution 17:373–387. doi:10.2307/2407089
MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton
Martin P, Dabert M, Dabert J (2010) Molecular evidence for species separation in the water mite Hygrobates nigromaculatus Lebert, 1879 (Acari, Hydrachnidia): evolutionary consequences of the loss of larval parasitism. Aquat Sci 72:347–360. doi:10.1007/s00027-010-0135-x
Meier R, Shiyang K, Vaidya G, Ng PKL, Hedin M (2006) DNA barcoding and taxonomy in diptera: a tale of high intraspecific variability and low identification success. Syst Biol 55:715–728. doi:10.1080/10635150600969864
Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 3:e422–e422. doi:10.1371/journal.pbio.0030422
Mutterer J, Zinck E (2013) Quick-and-clean article figures with FigureJ. J Microsc 252:89–91. doi:10.1111/jmi.12069
Navajas M, Navia D (2009) DNA-based methods for eriophyoid mite studies: review, critical aspects, prospects and challenges. Springer Netherlands, Dordrecht, pp 257–271. doi:10.1007/978-90-481-9562-6_13
Norris RD (2000) Pelagic species diversity, biogeography, and evolution. Paleobiology 26:236–258. doi:10.1666/0094-8373(2000)26[236:PSDBAE]2.0.CO;2
O’Neill JC, Fisher JR, Nelson WA, Skvarla MJ, Fisher DM, Dowling AP (2016) Systematics of testudacarine torrent mites (Acari, Hydrachnidia, Torrenticolidae) with descriptions of 13 new species from North America. Zookeys 582:13–110. doi:10.3897/zookeys.582.7684
Pešić V, Smit H (2016) Evidence of cryptic and pseudocryptic speciation in Brachypodopsis baumi species complex (Acari, Hydrachnidia, Aturidae) from Borneo, with description of three new species. Syst Appl Acarol 21:1092–1106
Pešic V, Valdecasas AG, García-Jimenez R (2012) Simultaneous evidence for a new species of torrenticola piersig, 1896 (acari, hydrachnidia) from Montenegro. Zootaxa 3515:38–50
Prada SN, Serralheiro A (2000) Stratigraphy and evolutionary model of Madeira Island. Museu Municipal Funchal, Bocagiana 200:1–13
Pratt HD (2010) Chapter 7: revisiting species and subspecies of island birds for a better assessment of biodiversity. Ornithol Monogr 67:78–89. doi:10.1525/om.2010.67.1.79
Ratnasingham S, Hebert PDN (2007) BARCODING: bold: the barcode of life data system (http://www.barcodinglife.org). Mol Ecol Notes 7:355–364. doi:10.1111/j.1471-8286.2007.01678.x
Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge
Schindelin J et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi:10.1038/nmeth.2019
Smith IM, Cook DR, Smith BP (2010) Water mites (Hydrachnidiae) and other arachnids. In: Thorpe J, Covich A (eds) Ecology and classification of North American freshwater invertebrates, 3rd edn. Academic Press (Elsevier Inc.), New York
Stålstedt J, Bergsten J, Ronquist F (2013) “Forms” of water mites (Acari: Hydrachnidia): intraspecific variation or valid species? Ecol Evol. doi:10.1002/ece3.704
Stuart BL, Inger RF, Voris HK (2006) High level of cryptic species diversity revealed by sympatric lineages of Southeast Asian forest frogs. Biol Lett 2:470–474. doi:10.1098/rsbl.2006.0505
Tavares ES, Baker AJ (2008) Single mitochondrial gene barcodes reliably identify sister-species in diverse clades of birds. BMC Evol Biol 8:81. doi:10.1186/1471-2148-8-81
Taylor HR, Harris WE (2012) An emergent science on the brink of irrelevance: a review of the past 8 years of DNA barcoding. Mol Ecol Resour 12:377–388. doi:10.1111/j.1755-0998.2012.03119.x
Triantis KA, Guilhaumon F, Whittaker RJ (2012) The island species-area relationship: biology and statistics. J Biogeogr 39:215–231. doi:10.1111/j.1365-2699.2011.02652.x
Valdecasas AG (2008) Confocal microscopy applied to water mite taxonomy with the description of a new genus of Axonopsinae (Acari, Parasitengona, Hydrachnidia) from Central America. Zootaxa 1820:41–48
Valdecasas AG, Abad A (2011) Morphological confocal microscopy in arthropods and the enhancement of autofluorescence after proteinase K extraction. Microsc Microanal 17:109–113. doi:10.1017/S1431927610094213
Ward RD (2009) DNA barcode divergence among species and genera of birds and fishes. Mol Ecol Resour 9:1077–1085 doi:10.1111/j.1755-0998.2009.02541.x
Warren BH et al (2015) Islands as model systems in ecology and evolution: prospects fifty years after MacArthur-Wilson. Ecol Lett 18:200–217 doi:10.1111/ele.12398
Williamson MH (1981) Island populations. Oxford University Press, Oxford
Wollenberg KC, Vieites DR, Glaw F, Vences M (2011) Speciation in little: the role of range and body size in the diversification of Malagasy mantellid frogs. BMC Evol Biol 11:217. doi:10.1186/1471-2148-11-217
Yang Z (2014) Molecular evolution. Oxford University Press. doi:10.1093/acprof:oso/9780199602605.001.0001
Zuiderveld K (1994) Contrast limited adaptive histogram equalization. In: Heckbert PS (ed) Graphics gems IV. Academic Press Professional, Inc., San Diego, CA, pp 474–485
Acknowledgements
The three authors have read and contributed to all sections of the manuscript. Bruno GV Vaticón revised the English. We are grateful for a Synthesys grant to AGV to study Lundblad collection at Stockholm Museum Natural History where Gunvi Lindberg, curator of Invertebrates was very helpful and understanding. This work was carried out at the Systematics Laboratory of the MNCN. JLH was supported by a Spanish MINECO postdoc Grant FPDI-2013-16116.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
García-Jiménez, R., Horreo, J.L. & Valdecasas, A.G. Minimal barcode distance between two water mite species from Madeira Island: a cautionary tale. Exp Appl Acarol 72, 133–143 (2017). https://doi.org/10.1007/s10493-017-0147-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10493-017-0147-5


