Experimental and Applied Acarology

, Volume 70, Issue 3, pp 275–286 | Cite as

Relative importance of local habitat complexity and regional factors for assemblages of oribatid mites (Acari: Oribatida) in Sphagnum peat bogs

  • M. A. Minor
  • S. G. Ermilov
  • D. A. Philippov
  • A. A. Prokin


We investigated communities of oribatid mites in five peat bogs in the north-west of the East European plain. We aimed to determine the extent to which geographic factors (latitude, separation distance), local environment (Sphagnum moss species, ground water level, biogeochemistry) and local habitat complexity (diversity of vascular plants and bryophytes in the surrounding plant community) influence diversity and community composition of Oribatida. There was a significant north-to-south increase in Oribatida abundance. In the variance partitioning, spatial factors explained 33.1 % of variability in abundance across samples; none of the environmental factors were significant. Across all bogs, Oribatida species richness and community composition were similar in Sphagnum rubellum and Sphagnum magellanicum, but significantly different and less diverse in Sphagnum cuspidatum. Sphagnum microhabitat explained 52.2 % of variability in Oribatida species richness, whereas spatial variables explained only 8.7 %. There was no distance decay in community similarity between bogs with increased geographical distance. The environmental variables explained 34.9 % of the variance in community structure, with vascular plants diversity, bryophytes diversity, and ground water level all contributing significantly; spatial variables explained 15.1 % of the total variance. Overall, only 50 % of the Oribatida community variance was explained by the spatial structure and environmental variables. We discuss relative importance of spatial and local environmental factors, and make general inferences about the formation of fauna in Sphagnum bogs.


Microarthropods Abundance Species richness Community structure Microhabitat Habitat diversity 

Supplementary material

10493_2016_75_MOESM1_ESM.doc (52 kb)
Supplementary material 1 (DOC 52 kb)


  1. Andrievskii VS, Syso AI (2012) The effect of different types of anthropogenic changes in soils on communities of oribatids in urban ecosystems. Contemp Probl Ecol 5:574–579CrossRefGoogle Scholar
  2. Behan-Pelletier VM (1999) Oribatid mite biodiversity in agroecosystems: role for bioindication. Agric Ecosyst Environ 74:411–423CrossRefGoogle Scholar
  3. Belyea LR (1996) Separating the effects of litter quality and microenvironment on decomposition rates in a patterned peatland. Oikos 77:529–539CrossRefGoogle Scholar
  4. Benscoter BW, Wieder RK (2003) Variability in organic matter lost by combustion in a boreal bog during the 2001 Chisholm fire. Can J For Res 33:2509–2513CrossRefGoogle Scholar
  5. Borcard D, Legendre P (1994) Environmental control and spatial structure in ecological communities: an example using oribatid mites (Acari, Oribatei). Environ Ecol Stat 1:37–61CrossRefGoogle Scholar
  6. Borcard D, Matthey W (1995) Effect of controlled trampling of Sphagnum mosses on their oribatid mite assemblages (Acari, Oribatei). Pedobiologia 39:219–230Google Scholar
  7. Borcard D, von Ballmoos VC (1997) Oribatid mites (Acari, Oribatida) of a primary peat bog pasture transition in the Swiss Jura mountains. Ecoscience 4:470–479Google Scholar
  8. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055CrossRefGoogle Scholar
  9. Bragina A, Berg C, Cardinale M, Shcherbakov A, Chebotar V, Berg G (2012) Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle. ISME J 6:802–813CrossRefPubMedGoogle Scholar
  10. Breeuwer A, Heijmans MMPD, Robroek BJM, Berendse F (2008) The effect of temperature on growth and competition between Sphagnum species. Oecologia 156:155–167CrossRefPubMedPubMedCentralGoogle Scholar
  11. Buttigieg PL, Ramette A (2014) A guide to statistical analysis in microbial ecology: a community-focused, living review of multivariate data analyses. FEMS Microbiol Ecol 90:543–550CrossRefPubMedGoogle Scholar
  12. Caruso T, Taormina M, Migliorini M (2012) Relative role of deterministic and stochastic determinants of soil animal community: a spatially explicit analysis of oribatid mites. J Anim Ecol 81:214–221CrossRefPubMedGoogle Scholar
  13. Chase JM (2003) Community assembly: when should history matter? Oecologia 136:489–498CrossRefPubMedGoogle Scholar
  14. Chase JM, Myers JA (2011) Disentangling the importance of ecological niches from stochastic processes across scales. Philos Trans R Soc B 366:2351–2363CrossRefGoogle Scholar
  15. Chen Y, Amundrud SL, Srivastava DS (2014) Spatial variance in soil microarthropod communities: niche, neutrality, or stochasticity? Ecoscience 21:405–418CrossRefGoogle Scholar
  16. Dorrepaal E, Aerts R, Cornelissen JHC, Callaghan TV, van Logtestijn RSP (2003) Summer warming and increased winter snow cover affect Sphagnum fuscum growth, structure and production in a sub-arctic bog. Glob Change Biol 10:93–104CrossRefGoogle Scholar
  17. Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196:483–493CrossRefGoogle Scholar
  18. Druk AJ (1982) Beetle mites of certain types of bogs in the Moscow Region. In: Gilarov MS (ed) Soil invertebrates of the Moscow region. Nauka, Moscow, pp 72–77 (in Russian) Google Scholar
  19. Druk AJ, Vilkamaa P (1988) Microarthropods of raised bogs of the northern European part of the USSR. In: Krivolutsky DA (ed) Soil biology of Northern Europe. Nauka, Moscow, pp 190–198 (In Russian) Google Scholar
  20. Erdmann G, Otte V, Langel R, Scheu S, Maraun M (2007) The trophic structure of bark-living oribatid mite communities analysed with stable isotopes (15 N; 13C) indicates strong niche differentiation. Exp Appl Acarol 41:1–10CrossRefPubMedGoogle Scholar
  21. Erdmann G, Scheu S, Maraun M (2012) Regional factors rather than forest type drive the community structure of soil living oribatid mites (Acari, Oribatida). Exp Appl Acarol 57:157–169CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ettema CH, Wardle DA (2002) Spatial soil ecology. Trends Ecol Evol 17:177–183CrossRefGoogle Scholar
  23. Gapeeva MV, Philippov DA, Lozhkina RA (2015) Heavy metals including rare earth ones in mosses of northwestern and central Russia. Modern Problems of Science and Education. www.science-education.ru/128-21608 (In Russian with English abstract)
  24. Gerdol R (1995) The growth dynamics of Sphagnum based on field measurements in a temperate bog and on laboratory cultures. J Ecol 83:431–437CrossRefGoogle Scholar
  25. Gergócs V, Hufnagel L (2009) Application of oribatid mites as indicators (review). AEER 7:79–98CrossRefGoogle Scholar
  26. Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195CrossRefGoogle Scholar
  27. Gulvik ME (2007) Mites (Acari) as indicators of soil biodiversity and land use monitoring: a review. Pol J Ecol 55:415–440Google Scholar
  28. Hajkova P, Hajek M (2007) Sphagnum distribution patterns along environmental gradients in Bulgaria. J Bryol 29:18–26CrossRefGoogle Scholar
  29. Hansen RA, Coleman DC (1998) Litter complexity and composition are determinants of the diversity and species composition of oribatid mites (Acari: Oribatida) in litterbags. Appl Soil Ecol 9:17–23CrossRefGoogle Scholar
  30. Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evolut Syst 36:191–218CrossRefGoogle Scholar
  31. Kaneko N, Salamanca E (1999) Mixed leaf litter effects on decomposition rates and soil microarthropod communities in an oak–pine stand in Japan. Ecol Res 14:131–138CrossRefGoogle Scholar
  32. Karasawa S, Gotoh K, Sasaki T, Hijii N (2005) Wind-based dispersal of Oribatid mites (Acari: Oribatida) in a subtropical forest in Japan. J Acal Soc Jpn 14:117–122CrossRefGoogle Scholar
  33. Kaspari M, Yanoviak SP (2009) Biogeochemistry and the structure of tropical brown food webs. Ecology 90:3342–3351CrossRefPubMedGoogle Scholar
  34. Lehmitz R (2014) The oribatid mite community of a German peatland in 1987 and 2012: effects of anthropogenic desiccation and afforestation. Soil Org 86:131–145Google Scholar
  35. Lehmitz R, Russell D, Hohberg K, Christian A, Xylander WER (2011) Wind dispersal of oribatid mites as a mode of migration. Pedobiologia 54:201–207CrossRefGoogle Scholar
  36. Lehmitz R, Russell D, Hohberg K, Christian A, Xylander WER (2012) Active dispersal of oribatid mites into young soils. Appl Soil Ecol 55:10–19CrossRefGoogle Scholar
  37. Limpens J, Berendse F (2003) How litter quality affects mass loss and N loss from decomposing Sphagnum. Oikos 103:537–547CrossRefGoogle Scholar
  38. Lindholm T, Vasander H (1990) Production of eight species of Sphagnum at Suuriso mire, southern Finland. Ann Bot Fenn 27:145–157Google Scholar
  39. Lindo Z, Winchester NN (2009) Spatial and environmental factors contributing to patterns in arboreal and terrestrial oribatid mite diversity across spatial scales. Oecologia 160:817–825CrossRefPubMedGoogle Scholar
  40. Maraun M, Scheu S (2000) The structure of oribatid mite communities (Acari, Oribatida): patterns, mechanisms and implications for future research. Ecography 23:374–383CrossRefGoogle Scholar
  41. Markkula I (1986a) Comparison of present and subfossil oribatid faunas in the surface peat of a drained pine mire. Ann Entomol Fenn 52:39–41Google Scholar
  42. Markkula I (1986b) Comparison of the communities of oribatids (Acari: Cryptostigmata) of virgin and forest ameliorated pine bogs. Ann Zool Fenn 23:33–38Google Scholar
  43. Maslova EV, Mosseichik YV, Ignatiev IA, Ivanov OV, Ignatov MS (2012) On the leaf development in Palaeozoic mosses of the order Protosphagnales. Arctoa 21:241–264CrossRefGoogle Scholar
  44. Minor MA (2011) Spatial patterns and local diversity in soil oribatid mites (Acari: Oribatida) in three pine plantation forests. Eur J Soil Biol 47:122–128Google Scholar
  45. Mumladze L, Murvanidze M, Behan-Pelletier V (2013) Compositional patterns in Holarctic peat bog inhabiting oribatid mite (Acari: Oribatida) communities. Pedobiologia 56:41–48CrossRefGoogle Scholar
  46. Nielsen UN, Osler GHR, Campbell CD, Neilson R, Burslem DFRP, van der Wal R (2010) The enigma of soil animal species diversity revisited: the role of small-scale heterogeneity. PLoS ONE 5(7):e11567CrossRefPubMedPubMedCentralGoogle Scholar
  47. Opelt K, Berg C, Schönmann S, Eberl L, Berg G (2007) High specificity but contrasting biodiversity of Sphagnum-associated bacterial and plant communities in bog ecosystems independent of the geographical region. ISME J 1:502–516CrossRefPubMedGoogle Scholar
  48. Perez-Harguindeguy N, Diaz S, Cornelissen JH, Venramini F, Cabido M, Castellanos A (2000) Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil 218:21–30CrossRefGoogle Scholar
  49. Popp E (1962) Semiaquatile Lebensräume (Bülten) in Hoch- und Niedermooren. 2 Teil. Die Milbenfauna [Semi-aquatic habitats (hummocks) of raised bogs and fens. 2nd Part. The mite fauna]. Int Rev Ges Hydrobiol 47:533–579 (in German) CrossRefGoogle Scholar
  50. Robroek BJM, Limpens J, Breeuwer A, Schouten MGC (2007) Effects of water level and temperature on performance of four Sphagnum mosses. Plant Ecol 190:97–107CrossRefGoogle Scholar
  51. Rydin H, Jeglum JK (2006) The biology of peatlands. Oxford University Press, OxfordCrossRefGoogle Scholar
  52. Schneider K, Migge S, Norton RA, Scheu S, Langel R, Reineking A, Maraun M (2004) Trophic niche differentiation in oribatid mites (Oribatida, Acari): evidence from stable isotope ratios (15 N/14 N). Soil Biol Biochem 36:1769–1774CrossRefGoogle Scholar
  53. Seniczak A (2011) Oribatid mites (Acari, Oribatida) and their seasonal dynamics in a floating bog mat in Jeziorka Kozie Reserve, Tuchola Forest (Poland). Biol Lett 48:3–11Google Scholar
  54. Seniczak A, Seniczak S, Kowalski J, Graczyk R, Mistrzak M (2014) Mites (Acari) at the edges of bog pools in Orawa–Nowy–Targ Basin (S Poland), with particular reference to the Oribatida. Biol Lett 51:93–102CrossRefGoogle Scholar
  55. Spitzer K, Danks HV (2006) Insect biodiversity of boreal peat bogs. Annu Rev Entomol 51:137–161CrossRefPubMedGoogle Scholar
  56. Stary J (2006) Contribution to the knowledge of the oribatid mite fauna (Acari, Oribatida) of peat bogs in Bohemian Forest. Silva Gabreta 12:35–47Google Scholar
  57. Tarnocai C, Stolbovoy V (2006) Northern Peatlands: their characteristics, development and sensitivity to climate change. Dev Earth Surf Process. doi:10.1016/S0928-2025(06)09002-X Google Scholar
  58. Tarras-Wahlberg N (1961) The Oribatei of a central Swedish bog and their environment. Oikos Suppl 4:1–56Google Scholar
  59. Titus JE, Wagner DJ (1984) Carbon balance for two Sphagnum mosses: water-balance resolves a physiological paradox. Ecology 65:1765–1774CrossRefGoogle Scholar
  60. van Breemen N (1995) How Sphagnum bogs down other plants. Trends Ecol Evolut 10:270–275CrossRefGoogle Scholar
  61. Vellend M (2010) Conceptual synthesis in community ecology. Q Rev Biol 85:183–220CrossRefPubMedGoogle Scholar
  62. Vellend M, Srivastava D, Anderson K, Brown C, Jankowski J, Kleynhans E, Kraft N, Letaw A, Macdonald A, Maclean J, Myers-Smith I, Norris A, Xue X (2014) Assessing the relative importance of neutral stochasticity in ecological communities. Oikos 123:1420–1430CrossRefGoogle Scholar
  63. Vinogradov AP, Devirts AL, Dobkina EI, Markova NG (1966) Radiocarbon dating in the Vernadsky Institute I-IV. Radiocarbon 8:292–323CrossRefGoogle Scholar
  64. von Saltzwedel H, Maraun M, Scheu S, Schaefer I (2014) Evidence for frozen-niche variation in a cosmopolitan parthenogenetic soil mite species (Acari, Oribatida). PLoS ONE 9(11):e113268CrossRefGoogle Scholar
  65. Weigmann G (1991) Oribatid communities in transects from bogs to forests in Berlin indicating the biotope qualities. Mod Acarol 1:359–364Google Scholar
  66. Weigmann G (2006) Hornmilben (Oribatida). Die Tierwelt Deutschalnds. 76 Teil. Goecke and Evers, KelternGoogle Scholar
  67. Wheeler BD, Proctor MCF (2000) Ecological gradients, subdivisions and terminology of north-west European mires. J Ecol 88:187–203CrossRefGoogle Scholar
  68. Willmann C (1942) Acari aus nordwestdeutschen Mooren. Abh Naturwiss Ver Bremen 32:11–183 (in German) Google Scholar
  69. Zaitsev AA (2013) Oribatid mite communities (Acari: Oribatida) in different habitats of the Polistovsky Nature Reserve (Pskov Region, Russia). Est J Ecol 62:276–286CrossRefGoogle Scholar
  70. Zaitsev AS, Wolters V (2006) Geographic determinants of oribatid mite communities structure and diversity across Europe: a longitudinal perspective. Eur J Soil Biol 42:358–361CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • M. A. Minor
    • 1
  • S. G. Ermilov
    • 2
  • D. A. Philippov
    • 2
    • 3
  • A. A. Prokin
    • 2
    • 3
  1. 1.Institute of Agriculture and EnvironmentMassey UniversityPalmerston NorthNew Zealand
  2. 2.Tyumen State UniversityTyumenRussia
  3. 3.Papanin Institute for Biology of Inland WatersRussian Academy of SciencesBorokRussia

Personalised recommendations