Advertisement

Experimental and Applied Acarology

, Volume 69, Issue 3, pp 311–321 | Cite as

Intercropping garlic plants reduces Tetranychus urticae in strawberry crop

  • Fernando T. HataEmail author
  • Maurício U. Ventura
  • Mateus G. Carvalho
  • André L. A. Miguel
  • Mariana S. J. Souza
  • Maria T. Paula
  • Maria A. C. Zawadneak
Article

Abstract

The effect of aromatic plants on number of twospotted spider mite (TSSM), Tetranychus urticae Koch, when intercropped with strawberry were assessed in the field. During the first year, chives (Allium schoenoprasum L.), coriander (Coriandrum sativum L.), fennel (Foeniculum vulgare Mill.), garlic (Allium sativum L.), oregano (Origanum vulgare L.), or sweet marjoram (Origanum majorana L.) were intercropped with strawberry. Assessments were performed on TSSM populations by taking six samples from July 20 to September 20, 2012. During the second year, garlic plants were intercropped between rows of strawberry at three densities in greenhouse and field. Mobile forms and eggs numbers (only in field) of TSSM were evaluated from April 18 to June 05 (greenhouse) and June 06 to August 14, 2013 (field). It was found that intercropping with garlic caused a greater reduction of TSSM (up to 52 %) in strawberry plants when higher populations of TSSM occurred in the field. TSSM reduction was found in one sample when fennel and chives were intercropped with strawberries (42 and 50 % reduction, respectively); this also occurred when populations of TSSM were higher. The three densities of garlic plants (one, two and three rows among the strawberry rows) reduced TSSM mobile forms by 49, 53 and 60 % (greenhouse) and 44, 51 and 65 % (field), and eggs by 38, 43 and 64 % (field), respectively. The results suggest that intercropping garlic plants between strawberry rows is a promising strategy to reduce TSSM populations.

Keywords

Integrated pest management Fragaria x ananassa Twospotted spider mite Associational resistance Aromatic plants Allium sativum 

Notes

Acknowledgments

The authors thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for providing author and advisor scholarships; we also thank Edson Roberto Vaz Ronque for supporting us throughout the experimental period and Ayres de Oliveira Menezes Júnior, Lúcia Sadayo Assari Takahashi and Samuel Roggia for helpful comments on earlier versions of this manuscript.

References

  1. Agrofit. Sistema de Agrotóxicos Fitossanitários. http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. Accessed 20 Mar 2014
  2. Anvisa - Agência Nacional de Vigilância Sanitária - Divulgação monitoramento de agrotóxicos em alimentos (2012) http://portal.anvisa.gov.br/wps/wcm/connect/58a5580041a4f6669e579ede61db78cc/Relatorio_PARA_2011_12-30_10_13.pdf?MOD=AJPERES. Accessed 06 Apr 2014
  3. Attia S, Griss KL, Mailleux AC, Lognay G, Heuskin S, Mayoufi S, Hance T (2012) Effective concentrations of garlic distillate (Allium sativum) for the control of Tetranychus urticae (Tetranychidae). J Appl Entomol 136:302–312CrossRefGoogle Scholar
  4. Attia S, Griss KL, Lognay G, Bitume E, Hance T, Mailleux AC (2013) A review of the major biological approaches to control the worldwide pest Tetranychus urticae (Acari: Tetranychidae) with special reference to natural pesticides. J Pest Sci 86:361–386CrossRefGoogle Scholar
  5. Ayres M (2007) BioEstat 5.0: Aplicações estatísticas nas áreas das ciências biológicas e médicas. Belém: Sociedade Civil Mamirauá, 5th edn. Conselho Nacional de Desenvolvimento Científico e Tecnológico, BrasíliaGoogle Scholar
  6. Canteri MG, Althaus RA, Virgens Filho JS, Giglioti EA, Godoy CV (2001) SASM-Agri: Sistema para análise e separação de médias em experimentos agrícolas pelos métodos Scott-Knott, Tukey e Duncan. Revista Brasileira de Agrocomputação 1:18–24Google Scholar
  7. Carvalho LM, Nunes MUC, Oliveira IR, Leal MLS (2009) Produtividade do tomateiro em cultivo solteiro e consorciado com espécies aromáticas e medicinais. Hortic Bras 27:458–464CrossRefGoogle Scholar
  8. Choh Y, Shimoda T, Ozawa R, Dicke M, Takabayashi J (2004) Exposure of bean leaves to volatiles from herbivore-induced conspecific plants results in emission of carnivore attractants: Active or passive process? J Chem Ecol 30:1305–1317CrossRefPubMedGoogle Scholar
  9. Costello M (2011) Insects and mites in organic vineyards systems. In: McGourty GT, Ohmart J, Chaney D (eds) Organic winegrowing manual. ANR Publications, Richmond, pp 111–144Google Scholar
  10. Croft BA, van de Baan HE (1988) Ecological and genetic factors influencing evolution of pesticide resistance in tetranychid and phytoseiid mites. Exp Appl Acarol 4:277–300CrossRefGoogle Scholar
  11. Greco NM, Pereyra PC, Guillade A (2006) Host-plant acceptance and performance of Tetranychus urticae (Acari, Tetranychidae). J Appl Entomol 130:32–36CrossRefGoogle Scholar
  12. Himanen SJ, Blande JD, Klemola T, Pulkkinen J, Heijari J, Holopainen JK (2010) Birch (Betula spp.) leaves adsorb and re-release volatiles specific to neighbouring plants—A mechanism for associational herbivore resistance? New Phytol 186:722–732CrossRefPubMedGoogle Scholar
  13. Hincapié CA, López GE, Torres R (2008) Comparison and characterization of garlic (Allium sativum L.) bulbs extracts and their effect on mortality and repellency of Tetranychus urticae Koch (Acari: Tetranychidae). Chil J Agric Res 68:317–327CrossRefGoogle Scholar
  14. Isman MB (2000) Plant essential oil for pest and disease management. Crop Prot 19:603–608CrossRefGoogle Scholar
  15. Kant MR, Bleeker PM, van Wijk M, Schuurink RC, Haring MA (2009) Plant volatiles in defence. In: van Loon LC (ed) Advances in botanical research. Academic Press, London, pp 613–666Google Scholar
  16. Letourneau DK, Armbrecht I, Rivera BSR, Lerma JM, Carmona EJ, Daza MC, Escobar S, Galindo V, Gutiérrez C, López SD, Mejía JL, Rangel AMA, Rangel JH, Rivera L, Saavedra CA, Torres AM, Trujillo AR (2011) Does plant diversity benefit agroecosystems? A synthetic review. Ecol Appl 21:9–21CrossRefPubMedGoogle Scholar
  17. Mallet ACT (2011) Utilização de óleos essenciais de condimentos na conservação de queijos tipo Quark. Dissertation, Universidade Federal de Lavras, LavrasGoogle Scholar
  18. Marques-Francovig CR, Mikami AY, Dutra V, Carvalho MG, Picarelli B, Ventura MU (2014) Organic fertilization and botanical insecticides to control twospotted spider mite in strawberry. Cienc Rural 44:1908–1914CrossRefGoogle Scholar
  19. Moraes GJ, Flechtmann CHW (2008) Manual de acarologia: Acarologia básica e ácaros de plantas cultivadas no Brasil. Editora Holos, Ribeirão PretoGoogle Scholar
  20. Mtambo CC, Zeledon IH (2000) The development of integrated control methods for the tomato red spider mite (Tetranychus evansi) in Malawi. In: Agricultural technologies for sustainable development in Malawi. Proceedings of the first annual scientific conference held at the Malawi Institute of Management. pp 139–147Google Scholar
  21. Nyoike TW, Liburd OE (2013) Effect of Tetranychus urticae (Acari: Tetranychidae), on marketable yields of field-grown strawberries in north-central Florida. J Econ Entomol 106:1757–1766CrossRefPubMedGoogle Scholar
  22. Ronque ERV (2010) A Cultura do Morangueiro. Instituto Emater, CuritibaGoogle Scholar
  23. Sarker PK, Rahman MM, Das BC (2007) Effect of intercropping of mustard with onion and garlic on aphid population and yield. J Bio-sci 15:35–40Google Scholar
  24. Tscharntke T, Thiessen S, Dolch R, Boland W (2001) Herbivory, induced resistance, and interplant signal transfer in Alnus glutinosa. Biochem Syst Ecol 29:1025–1047CrossRefGoogle Scholar
  25. Uvah III, Coaker TH (1984) Effect of mixed cropping on some insect pests of carrot and onions. Entomol Exp Appl 36:159–167CrossRefGoogle Scholar
  26. Vásquez C, Morales-Sánchez J, da Silva FR, Sandoval MF (2012) Biological studies and pest management of phytophagous mites in South America. In: Soloneski S (ed) Integrated pest management and pest control—current and future tactics. http://www.intechopen.com/books/integrated-pest-management-and-pest-control-current-and-future-tactics/biological-studies-and-pest-management-of-phytophagous-mites-in-south-america. Accessed 04 Apr 2014
  27. Veronez B, Sato ME, Nicastro RL (2012) Toxicidade de compostos sintéticos e naturais sobre Tetranychus urticae e o predador Phytoseiulus macropilis. Pesqui Agropecu Bras 47:511–518CrossRefGoogle Scholar
  28. Virtanen AI (1965) Studies on organic sulphur compounds and other labile substances in plants. Phytochemistry 4:207–228CrossRefGoogle Scholar
  29. Zhang Z (2003) Mites of greenhouses: identification, biology and control. CABI Publishing, WallingfordCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Fernando T. Hata
    • 1
    Email author
  • Maurício U. Ventura
    • 1
  • Mateus G. Carvalho
    • 1
  • André L. A. Miguel
    • 1
  • Mariana S. J. Souza
    • 1
  • Maria T. Paula
    • 1
  • Maria A. C. Zawadneak
    • 2
  1. 1.Entomology Laboratory, Department of AgronomyUniversidade Estadual de LondrinaLondrinaBrazil
  2. 2.Entomology Laboratory, Department of AgronomyUniversidade Federal do ParanáCuritibaBrazil

Personalised recommendations